Calcium phosphate (CaP) particles immobilizing antibacterial agents have the potential to be used as dental disinfectants. In this study, we fabricated CaP particles with immobilized ciprofloxacin (CF), a commonly prescribed antibacterial agent, via a coprecipitation process using a supersaturated CaP solution. As the aging time in the coprecipitation process increased from 2 to 24 h, the CaP phase in the resulting particles transformed from amorphous to low-crystalline hydroxyapatite, and their Ca/P elemental ratio, yield, and CF content increased.
View Article and Find Full Text PDFCoating layers consisting of a crystalline apatite matrix with immobilized basic fibroblast growth factor (bFGF) can release bFGF, thereby enhancing bone regeneration depending on their bFGF content. We hypothesized that the incorporation of fluoride ions into apatite crystals would enable the tailored release of bFGF from the coating layer depending on the layer's fluoride content. In the present study, coating layers consisting of fluoride-incorporated apatite (FAp) crystals with immobilized bFGF were coated on a porous collagen sponge by a precursor-assisted biomimetic process using supersaturated calcium phosphate solutions with various fluoride concentrations.
View Article and Find Full Text PDFRecently, injectable hydrogels have attracted much interest in tissue engineering (TE) applications because of their controlled flowability, adaptability, and easy handling properties. This work emphasizes the synthesis and characterizations of bioactive glass (BAG) nanoparticle-reinforced poly(ethylene glycol) (PEG)- and poly(-vinylcarbazole) (pNVC)-based minimally invasive composite injectable hydrogel suitable for bone regeneration. First, the copolymer was synthesized from a combination of PEG and pNVC through reversible addition-fragmentation chain-transfer (RAFT) polymerization and nanocomposite hydrogel constructs were subsequently prepared by conjugating BAG particles at varying loading concentrations.
View Article and Find Full Text PDFNanoarchitectonics relies on the fabrication of materials at the atomic/molecular level to achieve the desired shape and function. Significant advances have been made in understanding the characteristics and spatial assemblies that contribute to material performance. Biomaterials undergo several changes when presented with various environmental cues.
View Article and Find Full Text PDFThe instantaneous demand for foods, detergents, cosmetics, and personal care products that can be commercialized with value-added benefits including natural origin, environmental friendliness, and sustainability is increasing day by day. Accordingly, the associated industries are trying to identify bioactive ingredients that may be natural alternatives to synthetic ones. This review article is mainly aimed at the classification of natural saccharide-based emulsifiers (which are mainly bio-surfactants), their methods of preparation and their various types of applications in daily life activities.
View Article and Find Full Text PDFThe influence of exposing carcinoma cells to a static magnetic field (SMF) and low-intensity pulsed ultrasound (LIPUS), for different durations (15-45 min/d), in the presence of magnetic and non-magnetic drug carriers, on their in vitro inhibition is examined. Increasing the exposure time by 15 min/d decreased the culture duration by 24 h to achieve the same level of inhibition in colon (HCT116) and hepatocellular (HepG2) cells. Cell cycle analysis revealed enhanced cellular blockage in G1 and S phases with SMF + LIPUS exposure, and exposure for 45 min/d completely suppressed the S → G2 transition.
View Article and Find Full Text PDFDextrin and poly (N-vinyl caprolactam) based amphiphilic graft copolymer has recently been developed using RAFT polymerization. The prepared graft copolymer has been characterized in details using FTIR and H NMR spectral analyses, GPC, TGA, FESEM, TEM and DLS analyses. GPC analysis results indicate that the polymerization is controlled, while the LCST value of the copolymer suggests that the synthesized copolymer demonstrates sol-gel behaviour on applying temperature.
View Article and Find Full Text PDFHypothesis: Polymeric micelles are fabricated by the self-aggregation of amphiphilic polymers in aqueous medium. Amphiphilic block copolymers consist of hydrophobic and hydrophilic blocks. The hydrophilic blocks form corona, while hydrophobic blocks produce core of the micelle.
View Article and Find Full Text PDFHerein an amphiphilic graft copolymer has been synthesized from tamarind gum and poly (methyl methacrylate) (g-TKP/pMMA) using atom transfer radical polymerization (ATRP) in presence of CuBr/bpy catalyst. Structural and surface properties of the copolymer have been investigated using H NMR and FTIR spectra, DLS, TGA and FESEM analyses. The controlled and living nature of polymerization reaction has been explored using GPC analysis, while the gel characteristics of the copolymer has been analysed by rheological study.
View Article and Find Full Text PDFThis article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature.
View Article and Find Full Text PDF