Publications by authors named "Aniruddha Bapat"

We present methods for implementing arbitrary permutations of qubits under interaction constraints. Our protocols make use of previous methods for rapidly reversing the order of qubits along a path. Given nearest-neighbor interactions on a path of length , we show that there exists a constant such that the quantum routing time is at most , whereas any SWAP-based protocol needs at least time .

View Article and Find Full Text PDF

Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between.

View Article and Find Full Text PDF

Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements.

View Article and Find Full Text PDF

There are many possible architectures of qubit connectivity that designers of future quantum computers will need to choose between. However, the process of evaluating a particular connectivity graph's performance as a quantum architecture can be difficult. In this paper, we show that a quantity known as the isoperimetric number establishes a lower bound on the time required to create highly entangled states.

View Article and Find Full Text PDF

The construction of large-scale quantum computers will require modular architectures that allow physical resources to be localized in easy-to-manage packages. In this work we examine the impact of different graph structures on the preparation of entangled states. We begin by explaining a formal framework, the hierarchical product, in which modular graphs can be easily constructed.

View Article and Find Full Text PDF