Surface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3 ligase Parkin.
View Article and Find Full Text PDFRIG-I detects invading viral RNA and activates the transcription factors NF-kappaB and IRF3 through the mitochondrial protein MAVS. Here we show that RNA bearing 5'-triphosphate strongly activates the RIG-I-IRF3 signaling cascade in a reconstituted system composed of RIG-I, mitochondria, and cytosol. Activation of RIG-I requires not only RNA but also polyubiquitin chains linked through lysine 63 (K63) of ubiquitin.
View Article and Find Full Text PDFTRAF6 is a ubiquitin ligase that is essential for the activation of NF-kappaB and MAP kinases in several signalling pathways, including those emanating from the interleukin 1 and Toll-like receptors. TRAF6 functions together with a ubiquitin-conjugating enzyme complex consisting of UBC13 (also known as UBE2N) and UEV1A (UBE2V1) to catalyse Lys 63-linked polyubiquitination, which activates the TAK1 (also known as MAP3K7) kinase complex. TAK1 in turn phosphorylates and activates IkappaB kinase (IKK), leading to the activation of NF-kappaB.
View Article and Find Full Text PDFPolyubiquitin chains linked through different lysines of ubiquitin may exert both proteasome-dependent and -independent functions. In a recent Cell issue, Xu et al. employ quantitative proteomics to profile polyubiquitin linkages in yeast.
View Article and Find Full Text PDFMicrotubule pulling forces that govern mitotic spindle movement of chromosomes are tightly regulated by G-proteins. A host of proteins, including Galpha subunits, Ric-8, AGS3, regulators of G-protein signalings, and scaffolding proteins, coordinate this vital cellular process. Ric-8A, acting as a guanine nucleotide exchange factor, catalyzes the release of GDP from various Galpha.
View Article and Find Full Text PDFRecently, in vitro selection using mRNA display was used to identify a novel peptide sequence that binds with high affinity to Galpha(i1). The peptide was minimized to a 9-residue sequence (R6A-1) that retains high affinity and specificity for the GDP-bound state of Galpha(i1) and acts as a guanine nucleotide dissociation inhibitor (GDI). Here we demonstrate that the R6A-1 peptide interacts with Galpha subunits representing all four G protein classes, acting as a core motif for Galpha interaction.
View Article and Find Full Text PDFActivator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) that contains four G protein regulatory (GPR) or GoLoco motifs in its C-terminal domain. The entire C-terminal domain (AGS3-C) as well as certain peptides corresponding to individual GPR motifs of AGS3 bound to G alpha i1 and inhibited the binding of GTP by stabilizing the GDP-bound conformation of G alpha i1. The stoichiometry, free energy, enthalpy, and dissociation constant for binding of AGS3-C to G alpha i1 were determined using isothermal titration calorimetry.
View Article and Find Full Text PDF