Publications by authors named "Anindya Halder"

Objectives: Secondary peritonitis is caused by infection of the peritoneal cavity due to perforation of the alimentary tract. Mannheim's peritonitis ındex (MPI) is a prognostic scoring system that predicts outcomes in peritonitis. Increasing MPI scores correlate with poor outcomes and mortality.

View Article and Find Full Text PDF

Feature selection is one of the trustworthy processes of dimensionality reduction technique to select a subset of relevant and non-redundant features from large datasets. Ensemble feature selection (EFS) approach is a recent technique aiming at accumulating diversity in the subset of selected features. It improves the performance of learning algorithms and obtains more stable and robust results.

View Article and Find Full Text PDF

Background And Objective: Retrieving meaningful information from high dimensional dataset is an important and challenging task. Normally, medical dataset suffers from several issues such as curse of dimensionality problem, uncertainty, presence of missing values, non-relevant and redundant attributes, etc. Any machine learning technique applied on such data (without any preprocessing) by and large takes a considerable amount of computational time and may degrade the performance of the model.

View Article and Find Full Text PDF

Segmentation of brain tissues from MRI often becomes crucial to properly investigate any region of the brain in order to detect abnormalities. However, the accurate segmentation of the brain tissues is a challenging task as the different tissue regions are usually imprecise, indiscernible, ambiguous, and overlapping. Additionally, different tissue regions are non-linearly separable.

View Article and Find Full Text PDF

Cancer classification from microarray gene expression data is one of the important areas of research in the field of computational biology and bioinformatics. Traditional supervised techniques often fail to produce desired accuracy as the number of clinically labeled patterns are very less. In such situation, active learning technique can play an important role as it computationally selects only few most informative (confusing) samples to be labeled by the experts and are added to the training set which inturn can improve the accuracy of the prediction.

View Article and Find Full Text PDF