The resuscitation of bacteria through biofilms presents a critical challenge in controlling microbial pathogenesis and addressing antimicrobial resistance. Continuous antibiofilm activity, particularly on frequently contacted surfaces, is therefore critical. In this study, a scalable is introduced, one-step fabrication of FeO/AgBr nanoimprints using a polymerizable sol-gel (PSG) approach to create functional nanostructured thin films with strong antimicrobial properties.
View Article and Find Full Text PDFWhile ultrafine gold nanosystems (UGNs) are being extensively studied for their antimicrobial activities, hitherto, no report is available on their propensity towards mitigating bacterial resuscitation-a potential factor contributing to the antimicrobial resistance. The investigations herein with two categories of gold nanosystems-modulated for their stability and surface accessibility through glutathione capping-have provided insights into overcoming resuscitation. Additionally, the study cautions that even moderate resistance development in bacteria exposed to nanosystems can result in significant cross-resistance against conventional antibiotics.
View Article and Find Full Text PDFCaffeic acid (CA) is a naturally occurring plant-derived polyphenol possessing diverse biological properties. However, the poor water-solubility of CA restricts its widespread applications. On the other hand, biogenic amines such as spermine and spermidine are natural constituents in eukaryotes.
View Article and Find Full Text PDF