Publications by authors named "Animesh Jana"

Developing efficient, low-cost, non-precious and stable electrocatalyst is necessary for sustainable electrocatalytic water splitting. Recently, borophene has emerged as a novel two-dimensional material with exciting properties. Although several researchers have theoretically predicted its applicability towards effective electrocatalytic water splitting, studies on its practical applications are still limited.

View Article and Find Full Text PDF

Direct discharge of raw domestic sewage enriched with nitrogenous and phosphorous compounds into the water bodies causes eutrophication and other environmental hazards with detrimental impacts on public and ecosystem health. The present study focuses on phycoremediation of gray water with sp. using an innovative hydrophobic ceramic membrane-based photobioreactor system integrated with CO biofixation and biodiesel production, aiming for green technology development.

View Article and Find Full Text PDF

Development of an efficient, stable and inexpensive catalyst for oxygen evolution reaction (OER) is critical to electrochemical water splitting. In this regard, a precious-metal free electrocatalyst has been synthesized employing a hydrothermal route. The prepared graphene oxide wrapped cobalt phosphate nanotubes deposited on Ni foam electrode shows a low overpotential of 234 mV at a current density of 10 mA/cm for OER in 1(M) KOH, lower than a benchmarking electrocatalyst IrO at the same current density.

View Article and Find Full Text PDF

Cyanide contamination in steel plant wastewater is a challenge. Nitrate intercalated nickel aluminum layered double hydroxide (LDH) is specially designed and synthesized for adsorption of cyanide from wastewater. The LDH was characterized by Field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and BET surface analyzer.

View Article and Find Full Text PDF

Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz.

View Article and Find Full Text PDF