We present an accreditation protocol for analogue, i.e., continuous-time, quantum simulators.
View Article and Find Full Text PDFQuantum states of light have been shown to enhance precision in absorption estimation over classical strategies. By exploiting interference and resonant enhancement effects, we show that coherent-state probes in all-pass ring resonators can outperform any quantum probe single-pass strategy even when normalized by the mean input photon number. We also find that under optimal conditions coherent-state probes equal the performance of arbitrarily bright pure single-mode squeezed probes in all-pass ring resonators.
View Article and Find Full Text PDFMonoclinic β-GaO, an ultra-wide bandgap semiconductor, has seen enormous activity in recent years. However, the fundamental study of the plasmon-phonon coupling that dictates electron transport properties has not been possible due to the difficulty in achieving higher carrier density (without introducing chemical disorder). Here, we report a highly reversible, electrostatic doping of β-GaO films with tunable carrier densities using ion-gel-gated electric double-layer transistor configuration.
View Article and Find Full Text PDFWe present a model-independent measure of dynamical complexity based on simulation of complex quantum dynamics using stroboscopic Markovian dynamics. Tools from classical signal processing enable us to infer the Hilbert space dimension of the complex quantum system evolving under a time-independent Hamiltonian via pulsed interrogation. We illustrate this using simulated third-order pump-probe spectroscopy data for exciton transport in a toy model of a coupled dimer with vibrational levels, revealing the dimension of the singly excited manifold of the dimer.
View Article and Find Full Text PDFWeak-value amplification (WVA) is a metrological protocol that amplifies ultrasmall physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall measurement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photodetection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector.
View Article and Find Full Text PDFOnly with the simultaneous estimation of multiple parameters are the quantum aspects of metrology fully revealed. This is due to the incompatibility of observables. The fundamental bound for multiparameter quantum estimation is the Holevo Cramér-Rao bound (HCRB) whose evaluation has so far remained elusive.
View Article and Find Full Text PDFThe role of quantum effects in excitonic energy transport (EET) has been scrutinised intensely and with increasingly sophisticated experimental techniques. This increased complexity requires invoking correspondingly elaborate models to fit spectroscopic data before molecular parameters can be extracted. Possible quantum effects in EET can then be studied, but the conclusions are strongly contingent on the efficacy of the fitting and the accuracy of the model.
View Article and Find Full Text PDFOptomechanical sensors involving multiple optical carriers can experience mechanically mediated interactions causing multimode correlations across the optical fields. One instance is laser-interferometric gravitational wave detectors which introduce multiple carrier frequencies for classical sensing and control purposes. An outstanding question is whether such multicarrier optomechanical sensors outperform their single-carrier counterpart in terms of quantum-limited sensitivity.
View Article and Find Full Text PDFA quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix.
View Article and Find Full Text PDFNps Synthesis, Characterization And Azo-dye Degradation: A facile cost effective wet chemical method of synthesis is proposed for Cu-NPs, CuO-NPs and Cu-doped ZnO-NPs. The nanomaterials are opto-physically characterized for nano standard quality. Cu-doped ZnO-NPs based catalytic system is found to possess most efficient photocatalytic activity in degradation of two organic azo-dyes namely methyl red (MR) and malachite green (MG) that are released as industrial effluents in eco-environment intercollegium.
View Article and Find Full Text PDFWe study a large number of physically-plausible arrangements of chromophores, generated via a computational method involving stochastic real-space transformations of a naturally-occurring "reference" structure, illustrating our methodology using the well-studied Fenna-Matthews-Olson complex (FMO). To explore the idea that the natural structure has been tuned for efficient energy transport, we use an atomic transition charge method to calculate the excitonic couplings of each generated structure and a Lindblad master equation to study the quantum transport of an exciton from a "source" to a "drain" chromophore. We find significant correlations between structure and transport efficiency: High-performing structures tend to be more compact and, among those, the best structures display a certain orientation of the chromophores, particularly the chromophore closest to the source-to-drain vector.
View Article and Find Full Text PDFWe present a framework for the quantum enhanced estimation of multiple parameters corresponding to noncommuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all three components of a magnetic field. We propose a probe state that surpasses the precision of estimating the three components individually, and we discuss measurements that come close to attaining the quantum limit.
View Article and Find Full Text PDFWeak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology.
View Article and Find Full Text PDFQuantum properties of optical modes are typically assessed by observing their photon statistics or the distribution of their quadratures. Both particle- and wave-like behaviours deliver important information and each may be used as a resource in quantum-enhanced technologies. Weak-field homodyne (WFH) detection provides a scheme that combines the wave- and particle-like descriptions.
View Article and Find Full Text PDFWe develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration.
View Article and Find Full Text PDFA "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control.
View Article and Find Full Text PDFPhase estimation, at the heart of many quantum metrology and communication schemes, can be strongly affected by noise, whose amplitude may not be known, or might be subject to drift. Here we investigate the joint estimation of a phase shift and the amplitude of phase diffusion at the quantum limit. For several relevant instances, this multiparameter estimation problem can be effectively reshaped as a two-dimensional Hilbert space model, encompassing the description of an interferometer phase probed with relevant quantum states--split single-photons, coherent states or N00N states.
View Article and Find Full Text PDFData base (NCBI and TIGR) searches are made to retrieve protein sequences of different plant species namely Medicago truncatula, Pisum sativum, Ricinus communis, Arabidopsis thaliana, Vitis vinifera, Glycine max, Daucus carota, Oryza sativa Japonica Group, Arabidopsis lyrata subsp. lyrata, Brachypodium distachyon, Oryza sativa Indica Group, Zea mays and careful alignment of derived sequences shows 95% or higher identity. Similarly, DHFR sequence of human being is also retrieved from NCBI.
View Article and Find Full Text PDFScientificWorldJournal
September 2014
The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.
View Article and Find Full Text PDF