Lipopolysaccharide (LPS) is the dominating endotoxin of Gram-negative bacteria, which can cause mastitis. Bovine mammary epithelial cells (BMECs), as major components of the mammary gland, usually suffer LPS challenge. Cis-9, trans-11 conjugated linoleic acid (CLA) has been reported to have anti-inflammatory characteristics, while its anti-oxidative ability to maintain cellular homeostasis in BMECs under LPS challenge is limited.
View Article and Find Full Text PDFThe present study investigated the anti-inflammatory effects and potential mechanisms of sodium butyrate (SB) in bovine embryo tracheal cells (EBTr) stimulated with lipopolysaccharide (LPS). EBTr were exposed to either 1 mmol/L SB for 18 h for the SB group (SB) or to 0.4 μg/mL LPS for 6 h for the LPS group (LPS).
View Article and Find Full Text PDFHigh concentrate (HC) diet feeding leads to the lysis of rumen microbes and the release of hazardous metabolites, which can trigger inflammatory responses, thereby impairing dairy cow health and production. -D-glutamyl--diaminopimelic acid (iE-DAP), which constitutes the peptidoglycan (PGN) layer of bacteria, is the minimum PGN structure capable of activating inflammatory signaling pathways. This research paper aimed to determine the iE-DAP concentration and investigate the effects of an HC diet on the concentration of iE-DAP in the rumen fluid of dairy cows.
View Article and Find Full Text PDFAutophagy is a crucial cellular homeostatic process and an important part of the host defense system. Dysfunction in autophagy enhances tissue susceptibility to infection and multiple diseases. However, the role of nucleotide oligomerization domain 1 (NOD1) in autophagy in bovine hepatocytes is not well known.
View Article and Find Full Text PDFBackground: Long-term high-concentrate (HC) diet feeding increased bacterial endotoxins, which translocated into the mammary glands of dairy goats and induced inflammatory response. γ-d-Glutamyl-meso-diaminopimelic acid (iE-DAP), bacterial peptidoglycan component, triggered inflammatory response through activating nucleotide oligomerization domain protein 1 (NOD1) signaling pathway. While dietary supplemented with sodium butyrate (SB) relieved inflammatory response and improved animal health and production.
View Article and Find Full Text PDFThe anti-inflammatory effects of sodium valproate (VPA) in vivo and in vitro have been demonstrated in recent studies. The aim of this study was to evaluate whether VPA can suppress inflammation in bovine mammary epithelial cells (BMECs) stimulated by γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP). First, the concentration and treatment points of iE-DAP and VPA were optimized.
View Article and Find Full Text PDF(1) Background: The effects of a high-concentrate (HC) diet in inducing mammary epithelial cell apoptosis in dairy cows via the NOD1/Caspase-8 pathway have never been investigated before the current study. (2) Methods: Twelve Holstein Frisian cows at mid-lactation were selected to conduct this research. The animals were randomly allocated to two groups (n = 6), and both groups received one of two diets: a low-concentrate (LC) (forage: concentrate 6:4) or a high-concentrate (HC) (forage: concentrate 4:6) diet.
View Article and Find Full Text PDFStreptococcus suis has received increasing attention for its involvement in severe infections in pigs and humans; however, their pathogenesis remains unclear. ClpX and ClpP, two subunits of the ATP-dependent caseinolytic protease Clp, play key roles in bacterial adaptation to various environmental stresses. In this study, a virulent S.
View Article and Find Full Text PDFNucleotide oligomerization domain protein-1 (NOD1), a cytosolic pattern recognition receptor for the γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) is associated with the inflammatory diseases. Very little is known how bovine hepatocytes respond to specific ligands of NOD1 and sodium butyrate (SB). Therefore, the aim of our study was to investigate the role of bovine hepatocytes in NOD1-mediated inflammation during iE-DAP or LPS treatment or SB pretreatment.
View Article and Find Full Text PDFLong term high-concentrate (HC) diet feeding induces subacute ruminal acidosis (SARA), which is reported to trigger a pro-inflammatory response. This study aimed to investigate the role of nucleotide-binding oligomerization domain protein 1 (NOD1) in initiating the pro-inflammatory response triggered by grain-induced SARA in the mammary gland of mid-lactating dairy cows. Twelve multiparous mid-lactating Holstein cows (455 ± 28 kg) were randomly assigned into two groups to conduct the experiment for 18 weeks as follows: one group was fed a low-concentrate (LC) diet as a control (40% grain), and the other was fed an HC diet as a treatment (60% grain).
View Article and Find Full Text PDFBacterial pneumonia is a common disease in dairy herds worldwide, which brings great economic losses to farmers. Sodium butyrate (SB), an inhibitor of histone deacetylase, plays an important role in limiting inflammation. The purpose of this study was to investigate the protective effects of SB on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the potential mechanism of SB protection.
View Article and Find Full Text PDFThe goal of current investigations was to reveal the molecular mechanism triggered through feeding a diet with high-concentrate to dairy cows for subacute ruminal acidosis (SARA) induction and to examine the oxidative stress parameters in their mammary epithelial tissue. In an eighteen-weeks feeding trial, 12 Holstein Friesian cows with a standard weight of 455 ± 28 kg were evenly divided into two groups and given either a low-concentrate (LC, forage to concentrate ratio = 6:4) or a high-concentrate (HC, forage to concentrate ratio = 4:6) diet. A remarkable reduction in ruminal pH also increased ruminal lipopolysaccharide (LPS) concentration that was observed in the high-concentrate group of cows at 4 h post-feeding in the morning.
View Article and Find Full Text PDFThe present study aims to reveal the mechanisms of hepatocyte apoptosis induced by dietary feeding. Eighteen midlactating goats were randomly divided into three groups: the low concentrate group (LC), the high concentrate group (HC), and the sodium butyrate (SB)-supplemented group (SHC). After 10 weeks, the HC diet successfully induced subacute ruminal acidosis (SARA), which increased the lipopolysaccharide (LPS) and cytokine concentrations and the expression of genes and proteins related to inflammation and apoptosis.
View Article and Find Full Text PDFThe aim of this study is to explore the impact of sodium butyrate on d-glutamyl- meso-diaminopimelic acid (iE-DAP)-induced liver inflammation in dairy goats during subacute ruminal acidosis (SARA) caused by high-concentrate feed. To achieve this aim, 12 lactating dairy goats were randomly divided into two groups: a high-concentrate feed group ( n = 6, concentrate/forage = 6:4) as the control group and a sodium butyrate (SB) with high-concentrate feed group ( n = 6, concentrate/forage = 6:4, with 1% SB by wt.) as the treatment group.
View Article and Find Full Text PDF