Background: The skull diploic venous space (DVS) represents a potential route for cerebrospinal fluid (CSF) diversion and absorption in the treatment of hydrocephalus. The goal of this study was to carry out a detailed characterization of the drainage pattern of the DVS of the skull using high-resolution MRI, especially the diploic veins draining to the lacunae laterales (LLs) since the LLs constitute an important channel for the CSF to access the superior sagittal sinus and subsequently the systemic circulation. The objective was to identify those skull regions optimally suited for an intraosseous CSF diversion system.
View Article and Find Full Text PDFSonography using cadavers is beneficial in teaching and learning sonoanatomy, which is particularly important because imaging of the airway can be challenging due to the cartilaginous landmarks and air artifacts. In this exploratory study, we have attempted to compare the airway sonoanatomy of cadavers and live models. Our observations support the use of cadavers as teaching tools for learning airway sonoanatomy and practicing procedures involving airway structures, such as superior laryngeal nerve blocks, transtracheal injections, and needle cricothyroidotomy, before performance on patients in clinical situations.
View Article and Find Full Text PDFTransplantation is the surgical treatment of choice for end-stage organ failure. Transplantation procedures performed in the abdomen include liver, renal, pancreas, islet, intestinal, and multivisceral transplantations. Imaging plays a pivotal role in the posttransplantation setting for monitoring the transplant allograft and screening for complications.
View Article and Find Full Text PDFCalvarial diploic venous anatomy has been studied post-mortem, but few studies have addressed these venous structures in-vivo. Previous work in our laboratory has shown that intraosseous infusion through the skull diploic space near the diploic veins in animals and humans does access the superior sagittal sinus and the systemic venous system. We developed a volumetric method of imaging the diploic veins in-vivo using MRI, intravenous gadolinium, and digital subtraction to provide for three-dimensional depiction and exact localization of these veins.
View Article and Find Full Text PDFPurpose: The unique strategy of using cadaveric models for teaching ultrasound-guided blocks has been described for blocks of the upper and lower extremities. This report considers the parallels between cadaveric and live imaging relevant to scanning of the trunk. The inter-individual variation between subjects (particularly for epidural blocks) is also considered, for practicing ultrasound-guided or supported trunk and central neuraxial techniques.
View Article and Find Full Text PDFObject: The purpose of this human cadaver study was to determine whether or not an intraosseous skull infusion would access the superior sagittal sinus (SSS) via intradural venous channels. The diploic space of the skull bone contains a sinusoidal vascular network that communicates with the underlying dura mater. Diploic veins in the parasagittal area connect with endothelium-lined intradural channels in the subjacent dura and ultimately with the dural venous sinuses.
View Article and Find Full Text PDF