The Himalayas are highly susceptible to various natural disasters, such as the tectonically induced land deformation, earthquakes, landslides, and extreme climatic events. Recently, the Joshimath town witnessed a significantly large land subsidence activity. The phenomenon resulted in the development of large cracks in roads and in over 868 civil structures, posing a significant risk to inhabitants and infrastructure of the area.
View Article and Find Full Text PDFGlaciers in the Karakoram region are widely recognized for their historical surging phenomenon. Accurate field-based glacier monitoring is challenging in the Karakoram due to the presence of mixed-nature glaciers that are advancing, receding, and surging. Many geographers came to the opinion that surging is a thermally controlled activity in the Karakoram as opposed to a hydrologically controlled activity as a result of characteristics including high-altitude warmth, precipitation, and accumulation patterns of these glaciers.
View Article and Find Full Text PDFEnviron Monit Assess
October 2022
Water requirements of the mountain communities living in the Himalaya are supported by snow and glacier melt. The availability of water from the source depends on numerous climatic and glacier parameters. One key parameter is mass balance, which helps to assess the glacier health and future water availability.
View Article and Find Full Text PDFIn this study, an image segmentation algorithm ("OTSU") is applied for differentiation of snow/ice regions followed by interpretation of snowlines and estimation of mass budget of glaciers in Chandra basin, Western Himalaya, India between 2014 and 2020. The observations strongly suggest that the OTSU method can be used to differentiate the snow and ice regions on a glacier accurately from any satellite image, irrespective of the sensor characteristics. Also, this method suits well to delineate the snowlines for large sample of glaciers, other than the manual interpretation and semi-automated methods.
View Article and Find Full Text PDFThe runoff of Chandra river basin in the Himalayan India was assessed using a hydrological model combined with satellite remote sensing observations. During a test period between 2000 and 2015, in situ measurements of runoff and meteorological parameters were conducted in the glacial catchment areas of Sutridhaka and Chhotashigri. A good agreement was found between the observed and predicted runoff (correlation R > 0.
View Article and Find Full Text PDFEnviron Monit Assess
November 2021
The Upper Indus Basin has a large concentration of glaciers and mainly fed by snow and glacier melt. These melt runoffs are the primary driver of discharge and significantly contribute to Indus flows. Therefore, the present study was undertaken in the Upper Indus Basin (UIB) up to the Besham Quila site.
View Article and Find Full Text PDFWe simulated and analyzed the glacier dynamics over the Beas basin (situated in the north-western Himalayas) for the present (1980-2015) and future climates (2006-2100) under RCP4.5 and RCP8.5 global warming scenarios.
View Article and Find Full Text PDFUnderstanding the response of Himalayan-Karakoram (HK) rivers to climate change is crucial for ~1 billion people who partly depend on these water resources. Policy-makers tasked with sustainable water resources management require an assessment of the rivers' current status and potential future changes. We show that glacier and snow melt are important components of HK rivers, with greater hydrological importance for the Indus basin than for the Ganges and Brahmaputra basins.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFHimalayan glaciers have long been the focus of glaciologists across the world while trying to understand the contrasting patterns of elevation and mass changes. However, with limited number of ground observations, a comprehensive assessment of mass balance on a regional scale still remains elusive. Using the synoptic coverage of remote sensing data, we estimate a detailed spatial variation of glacier ice thickness change in the Central Himalaya of Uttarakhand using geodetic method, on a catchment scale.
View Article and Find Full Text PDFThe presence of glacial lakes in the Himalaya makes it a potential mountain hazard, as catastrophic failure of such waterbodies may lead to high-magnitude glacial lake outburst flood (GLOF) events that can cause significant damage to the low-lying areas. The present study evaluates the hazard potential of the South Lhonak lake located in the state of Sikkim, using both one and two-dimensional hydrodynamic modeling approaches. Different breach parameters were calculated based on the lake bathymetry and moraine dimensions.
View Article and Find Full Text PDFThis study analyses spatially resolved estimates of mass budget and surface velocity of glaciers in the Zanskar Basin of Western Himalaya in the context of varying debris cover, glacier hypsometry and orientation. The regional glacier mass budget for the period of 1999-2014 is -0.38 ± 0.
View Article and Find Full Text PDFHydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff.
View Article and Find Full Text PDFThe Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere.
View Article and Find Full Text PDF