The present paper deals with the investigation into the cGAS-STING pathway, focusing on the signaling of interferons through mathematical modeling and identifying a significant positive feedback loop regulated by STING for activation of type 1 interferons (IFN-1). Cyclic GMP-AMP synthase (cGAS) is responsible for detecting cytosolic DNA and initiating the STING (stimulator of interferon genes) pathway, which in turn causes the synthesis of pro-inflammatory cytokines and type I interferons. In addition to being crucial for pathogen identification, this route interacts with autophagy, a cellular mechanism that is necessary for immunological homeostasis and pathogen removal.
View Article and Find Full Text PDFIn the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs.
View Article and Find Full Text PDFAutophagy is a contentious issue in leishmaniasis and is emerging as a promising therapeutic regimen. Published research on the impact of autophagic regulation on survival is inconclusive, despite numerous pieces of evidence that spp. triggers autophagy in a variety of cell types.
View Article and Find Full Text PDF