Publications by authors named "Anil Nichani"

Wastewater-based surveillance (WBS) has shown to be an effective tool in monitoring the spread of SARS-CoV-2 and has helped guide public health actions. Consequently, WBS has expanded to now include the monitoring of mpox virus (MPXV) to contribute to its mitigation efforts. In this study, we demonstrate a unique sample processing and a molecular diagnostic strategy for MPXV detection that can inform on the epidemiological situation of mpox outbreaks through WBS.

View Article and Find Full Text PDF

Wastewater-based surveillance (WBS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offers a complementary tool for clinical surveillance to detect and monitor coronavirus disease 2019 (COVID-19). Since both symptomatic and asymptomatic individuals infected with SARS-CoV-2 can shed the virus through the fecal route, WBS has the potential to measure community prevalence of COVID-19 without restrictions from healthcare-seeking behaviours and clinical testing capacity. During the Omicron wave, the limited capacity of clinical testing to identify COVID-19 cases in many jurisdictions highlighted the utility of WBS to estimate disease prevalence and inform public health strategies; however, there is a plethora of in-sewage, environmental and laboratory factors that can influence WBS outcomes.

View Article and Find Full Text PDF

The Antimicrobial Resistance Network (AMRNet) is a laboratory-based antimicrobial resistance (AMR) surveillance system under development at the Public Health Agency of Canada's (PHAC's) National Microbiology Laboratory. The AMRNet surveillance system captures information on antimicrobial susceptibility testing from clinical and veterinary laboratories including both public and private facilities. In the future, the AMRNet system will also capture relevant data from existing PHAC surveillance systems for AMR including the Canadian Integrated Program for Antimicrobial Resistance Surveillance, the Canadian Nosocomial Infection Surveillance Program and the Enhanced Surveillance of Antimicrobial-Resistant Gonorrhea program, and contribute to the Canadian Antimicrobial Resistance Surveillance System.

View Article and Find Full Text PDF

Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been used to monitor trends in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence in the community. A major challenge in establishing wastewater surveillance programs, especially in remote areas, is the need for a well-equipped laboratory for sample analysis. Currently, no options exist for rapid, sensitive, mobile, and easy-to-use wastewater tests for SARS-CoV-2.

View Article and Find Full Text PDF

is a priority foodborne pathogen of public health concern and phenotypic serotyping provides critical information for surveillance and outbreak detection activities. Public health and food safety laboratories are increasingly adopting whole-genome sequencing (WGS) for characterizing pathogens, but it is imperative to maintain serotype designations in order to minimize disruptions to existing public health workflows. Multiple tools have been developed for predicting serotypes from WGS data, including SRST2, SerotypeFinder and EToKi EBEis, but these tools were not designed with the specific requirements of diagnostic laboratories, which include: speciation, input data flexibility (fasta/fastq), quality control information and easily interpretable results.

View Article and Find Full Text PDF

Hierarchical genotyping approaches can provide insights into the source, geography and temporal distribution of bacterial pathogens. Multiple hierarchical SNP genotyping schemes have previously been developed so that new isolates can rapidly be placed within pre-computed population structures, without the need to rebuild phylogenetic trees for the entire dataset. This classification approach has, however, seen limited uptake in routine public health settings due to analytical complexity and the lack of standardized tools that provide clear and easy ways to interpret results.

View Article and Find Full Text PDF

Previously we developed and tested the Salmonella GenoSerotyping Array (SGSA), which utilized oligonucleotide probes for O- and H- antigen biomarkers to perform accurate molecular serotyping of 57 Salmonella serotypes. Here we describe the development and validation of the ISO 17025 accredited second version of the SGSA (SGSA v. 2) with reliable and unambiguous molecular serotyping results for 112 serotypes of Salmonella which were verified both in silico and in vitro.

View Article and Find Full Text PDF

Public health and food safety institutions around the world are adopting whole genome sequencing (WGS) to replace conventional methods for characterizing Salmonella for use in surveillance and outbreak response. Falling costs and increased throughput of WGS have resulted in an explosion of data, but questions remain as to the reliability and robustness of the data. Due to the critical importance of serovar information to public health, it is essential to have reliable serovar assignments available for all of the Salmonella records.

View Article and Find Full Text PDF

serotyping remains the gold-standard tool for the classification of isolates and forms the basis of Canada's national surveillance program for this priority foodborne pathogen. Public health officials have been increasingly looking toward whole genome sequencing (WGS) to provide a large set of data from which all the relevant information about an isolate can be mined. However, rigorous validation and careful consideration of potential implications in the replacement of traditional surveillance methodologies with WGS data analysis tools is needed.

View Article and Find Full Text PDF

Synthetic oligodeoxynucleotides (ODN) containing CpG motifs signal through TLR9 and activate innate immunity resulting in protection against a variety of parasitic, bacterial and viral pathogens in mouse models. However, few studies have demonstrated protection in humans and large animals. In the present investigations, we evaluated protection by CpG ODN in a parainfluenza-3 (PI-3) virus infection in neonatal lambs.

View Article and Find Full Text PDF

The analysis of CpG ODN induced innate immune responses in different animal species has shown substantial similarities and differences in levels and types of induced cytokines profile. The objectives of these studies were to identify innate immune biomarkers activated by three classes of CpG ODNs in pigs. For this purpose, we investigated the kinetics of innate immune responses in immune cells from pigs following in vitro and in vivo stimulation with CpG ODNs.

View Article and Find Full Text PDF

The immune stimulatory effects of synthetic CpG DNA, on porcine peripheral blood mononuclear cells (PBMC) have been reported, but little is known about CpG-induced responses in other lymphoid tissues of pigs. We investigated innate immune responses induced by CpG DNA in cells from blood, lymph nodes (LN) and spleens of pigs. Porcine PBMC and lymph node cells (LNC) were stimulated in vitro with three classes (A-, B- and C-class) of CpG oligodeoxynucleotides (ODNs), and a non-CpG control ODN.

View Article and Find Full Text PDF

Mucosal delivery of CpG oligodeoxynucleotide (ODN) in mice has been shown to induce potent innate immunostimulatory responses and protection against infection. We evaluated the efficacy of CpG ODN in stimulating systemic innate immune responses in sheep following delivery to the pulmonary mucosa. Intrapulmonary (IPM) administration of B-Class CpG ODN in saline induced transient systemic responses which included increased rectal temperatures, elevated serum 2'5'-A synthetase and haptoglobin concentrations.

View Article and Find Full Text PDF

CpG ODN signal through Toll-like receptor 9 (TLR9) and trigger a cascade of events that lead to activation of innate and adaptive immune responses. Our current understanding of the immunobiology of host responses to CpG is based largely on studies on peripheral blood mononuclear cells (PBMC) and splenocytes. Little is known regarding CpG-induced responses in other lymphoid tissues.

View Article and Find Full Text PDF

Stimulation of the innate immune system is potentially very important in neonates who have an immature adaptive immune system and vaccination cannot be used to reduce the risk of infection. CpG oligodeoxynucleotide (ODN) can stimulate innate immune responses in newborn chickens and mice, but similar studies are lacking in other mammalian species. We have shown previously that CpG ODN can both stimulate an acute-phase immune response and induce the antiviral effector molecule, 2'5'-A synthetase, in adult sheep.

View Article and Find Full Text PDF

Non-methylated CpG motifs, present in viral and bacterial DNA, are one of many pathogen-associated molecular patterns (PAMP) recognized by the mammalian innate immune system. Recognition of this PAMP occurs through a specific interaction with toll-like receptor 9 (TLR9) and this interaction can induce cytokine responses that influence both innate and adaptive immune responses. Previous investigations determined that both the flanking sequences in synthetic CpG oligodeoxynucleotides (CpG ODN) and the cellular pattern of TLR9 expression can influence species-specific responses to CpG ODN.

View Article and Find Full Text PDF

Synthetic oligodeoxynucleotides (ODN) containing CpG sequences are recognized as a "danger" signal by the immune system of mammals. As a consequence, CpG ODN stimulate innate and adaptive immune responses in humans and a variety of animal species. Indeed, the potential of CpG ODN as therapeutic agents and vaccine adjuvants has been demonstrated in animal models of infectious diseases, allergy and cancer and are currently undergoing clinical trials in humans.

View Article and Find Full Text PDF

The pathogenic mechanisms involved in tropical theileriosis, caused by the tick-borne protozoan parasite Theileria annulata, are unclear. Pathology is associated with the schizont stage of the parasite, which resides within bovine macrophages. Breed-specific differences in pathology have been observed in cattle, several Bos indicus breeds are relatively resistant to tropical theileriosis whilst Bos taurus cattle are highly susceptible.

View Article and Find Full Text PDF

Immunostimulatory CpG oligodeoxynucleotide (ODN) can protect mice against infection by many pathogens but the mechanisms mediating disease protection are not well defined. Furthermore, the mechanisms of CpG ODN induced disease protection in vivo have not been investigated in other species. We investigated the induction of antiviral effector molecules in sheep treated with a class B CpG ODN (2007).

View Article and Find Full Text PDF

Cytosine-phosphate-guanosine (CpG)-DNA can induce an impressive array of innate immune responses that may directly or indirectly contribute to the clearance of infectious agents. Assays, such as lymphocyte proliferative responses, have been used to demonstrate that the immunostimulatory activity of CpG-DNA is conserved among a broad range of vertebrate species, but no studies have been completed to determine if qualitative differences exist among species for CpG-oligodeoxynucleotide (ODN)-induced innate immune responses. In this study, we assessed the capacity of a Class A (ODN 2216) and a Class B (ODN 2007) CpG-ODN to induce innate immune responses in two closely related species, ovine (n = 28) and bovine (n = 29).

View Article and Find Full Text PDF

Examples exist in the literature that demonstrate that treatment with immunostimulatory cytosine-phosphate-guanosine (CpG)-DNA can protect mice against infection by intracellular pathogens. There are, however, few studies reporting that CpG-DNA offers similar disease protection in other species. In this study, we assessed the potential of a class A and class B CpG oligodeoxynucleotide (ODN) to induce innate immune responses in sheep, an outbred species.

View Article and Find Full Text PDF

Serial dilution and single dilution enzyme linked immunosorbent assays (ELISA) were standardised and their sensitivity and specificity were compared for serodiagnosis of Babesia equi infection. The antibody titres of 24 donkey sera of known identity were determined separately by serial dilution ELISA using three different B. equi antigens namely whole merozoite (WM), cell membrane (CM) and high speed supernatant (HSS).

View Article and Find Full Text PDF