Enterolactone (EL) is a product of gut-microbial metabolism of dietary plant lignans. Studies linking EL with breast cancer risk have bolstered investigations into its effects on the mammary epithelial cells, and the mechanisms thereof. While it binds to the estrogen receptor α (ERα), its effect on the proliferation of mammary tumor cell lines is reportedly ambivalent; depending on its concentration.
View Article and Find Full Text PDFEnterolactone (EL) is a mammalian enterolignan produced in the intestine as a result of the microbial biotransformation of the dietary lignans. EL is a potential nutraceutical, with several health benefits, including anticancer and antimetastatic properties. Epidemiological data suggest a possible link between EL exposure and breast cancer risk.
View Article and Find Full Text PDFBesides short-term non-genomic effects, the G-protein coupled estrogen receptor (GPER) also mediates long-term genomic effects of estrogen. The genomic effects of GPER activation are not completely understood. G1 is a selective GPER agonist, which is popularly used for addressing the effects of GPER activation.
View Article and Find Full Text PDFUnlabelled: D-Pantothenic acid (DPA), also known as vitamin B is associated with several biological functions and its deficiency causes metabolic and energetic disorders in humans. Fortification of foods with DPA is the viable option to address this risk. DPA biological production route employs pantoate-β-alanine ligase (PBL) as the key enzyme, which avoids the tedious and time-consuming optical resolution process.
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer.
View Article and Find Full Text PDFBackground: RUNX1T1 is extensively studied in the context of AML1-RUNX1T1 fusion protein in acute myeloid leukemia. Little is known about the function of RUNX1T1 itself, although data on its function and regulation have begun to emerge from clinical, and in vitro studies. It is a putative tumor suppressor, whose expression is altered in a variety of solid tumors.
View Article and Find Full Text PDFThe expression of HOXB2, a homeobox transcription factor, is altered in a variety of solid tumors. Using an in vivo screen to identify regulators of breast tumor growth in murine mammary fat pads, Boimel and co-workers recently identified HOXB2 as a tumor suppressor. However, the mechanistic underpinnings of its role in breast cancer is not understood.
View Article and Find Full Text PDFThe G-protein coupled estrogen receptor (GPER) mediates short-term non-genomic effects of estrogen in diverse cell types and tissues. According to the NCBI nucleotide database, three variants of GPER are known. They are NM_001505.
View Article and Find Full Text PDFThe G-protein coupled estrogen receptor (GPER), a proposed tumor suppressor, relays short-term non-genomic responses in target cells and tissues. It frequently undergoes down-modulation in primary tumors of the breast, ovary, and endometrium. Liu and co-workers recently reported loss of GPER expression in colorectal cancer and attributed it to DNA methylation-dependent silencing.
View Article and Find Full Text PDFLow molecular weight heparosan is an un-sulfated polysaccharide primarily used as a precursor for heparin synthesis that has recently been used in drug delivery applications. Heparosan synthesis from recombinant bacterial systems provides a safer alternative to naturally producing pathogenic bacterial systems. In this study, we engineered a functional heparosan synthesis pathway in Bacillus megaterium by the expression of E.
View Article and Find Full Text PDFDespite advances in early detection and treatment, invasion and metastasis of breast tumors remains a major hurdle. Cystatin A (CSTA, also called stefin A), an estrogen-regulated gene in breast cancer cells, is an inhibitor of cysteine cathepsins, and a purported tumor suppressor. Loss of CSTA expression in breast tumors evidently shifts the balance in favor of cysteine cathepsins, thereby promoting extracellular matrix remodeling, tumor invasion and metastasis.
View Article and Find Full Text PDFMost estrogen receptor α (ERα) ligands target the ligand binding domain (LBD). Agonist 17β-estradiol (E) and tamoxifen (TM, known SERM), bind to the same site within the LBD. However, structures of ligand-bound complexes show that E and TM induce different conformations of helix 12 (H12).
View Article and Find Full Text PDFGPER1, also known as GPR30, is a novel seven-transmembrane G-protein coupled estrogen receptor that mediates both short-term (non-genomic) and long-term (genomic) effects of estrogen in target cells and tissues. A substantial body of work over the last two decades has highlighted its therapeutic or prognostic utility. However, the clinical data on the expression of GPER1 in breast tissue is ambiguous.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) -2 and -9, also called gelatinases, constitute a distinct subgroup within the MMP family of extracellular matrix remodeling proteases. Gelatinases are implicated in tumor cell invasion and metastasis, and are attractive therapeutic targets. Several synthetic small molecule inhibitors of MMPs developed till date have failed in clinical trials.
View Article and Find Full Text PDFRabbit antiserum was generated against the N-terminus of human GPR30 followed by peptide affinity purification. In this article, the methodology used and validation data are presented. The peptide affinity purified polyclonal antibody specifically detects human GPR30 in ELISA and on western blots of total protein prepared from human breast cancer cell lines.
View Article and Find Full Text PDFIn this data article we have provided evidence for the negative influence of divalent cations on (-)-epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2) activity in cell-free experiments. Chelating agents, such as EDTA and sodium citrate alone, did not affect MMP-2 activity. While EDTA enhanced, excess of divalent cations interfered with EGCG-mediated inhibition of MMP-2.
View Article and Find Full Text PDFThe aim of this study is to optimize the production of optically pure d (-) lactic acid (DLA) employing a cost-effective production medium. Based on the designed biomass approach, Sporolactobacillus inulinus NBRC 13595 was found to exhibit high DLA titer (19.0 g L ) and optical purity (99.
View Article and Find Full Text PDF(-)-Epigallocatechin-3-gallate (EGCG) is one of the most potent and the most studied green tea catechin. Reports on mechanisms of EGCG action and its cellular targets are plenty. Compelling evidences in the literature in favor of ER being one of its targets suggest that EGCG may have a significant impact on estrogen regulated gene expression.
View Article and Find Full Text PDFInvestigations using in vitro and in vivo models of breast carcinogenesis have demonstrated anti-neoplastic activity of the green tea polyphenol, epigallocatechin gallate (EGCG). Although a number of molecular targets of EGCG have been identified, its impact on the expression of estrogen target genes is not completely understood. Here, we examined the mRNA expression levels of two estrogen target genes, namely Trefoil Factor 1 (pS2) and Progesterone Receptor (PR) in MCF-7 cells treated with EGCG.
View Article and Find Full Text PDFCasein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced D-lactic acid (DLA) at 12.
View Article and Find Full Text PDFAberrant epigenetic silencing of the tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) gene that negatively regulates matrix metalloproteinases (MMPs) activity has been implicated in the pathogenesis and metastasis of breast cancer. In the present study, we demonstrate that green tea polyphenols (GTP) and its major constituent, epigallocatechin-3-gallate (EGCG) mediate epigenetic induction of TIMP-3 levels and play a key role in suppressing invasiveness and gelatinolytic activity of MMP-2 and MMP-9 in breast cancer cells. Treatment of MCF-7 and MDA-MB-231 breast cancer cells with 20 µM EGCG and 10 µg/mL GTP for 72 h significantly induces TIMP-3 mRNA and protein levels.
View Article and Find Full Text PDFThe relative activities of matrix metalloproteinases (MMPs) and their natural inhibitors (tissue inhibitors of matrix metalloproteinases, TIMPs) determine the extent of matrix degradation in any tissue. Their identification and characterization is key towards understanding remodeling of the prostate in the context of both castration induced atrophy and tumor invasion and metastasis. Although the expression of MMPs and TIMPs in prostate tumors has been reported, their regulation by androgens has not been studied.
View Article and Find Full Text PDFInvolution of the rat ventral prostate and concomitant modulation of gene expression post-castration is a well- documented phenomenon. While the rat castration model has been extensively used to study androgen regulation of gene expression in the ventral prostate,it is not clear whether all the gene expression changes post-castration are due to androgen depletion alone. To obtain insights into this, we performed differential display reverse transcriptase polymerase chain reaction (DD-RT-PCR) which resulted in the identification of castration and/or flutamide-regulated genes in the rat ventral prostate.
View Article and Find Full Text PDF