Publications by authors named "Anil Koul"

Respiratory syncytial virus (RSV) is a leading cause of respiratory infection, hospitalization and death in infants worldwide. No fully effective RSV therapy using direct antivirals is marketed. Since clinical efficacy data from naturally infected patients for such antivirals are not available yet, animal studies are indispensable to predict therapeutic intervention.

View Article and Find Full Text PDF

Background & Aims: Hepatitis E virus (HEV) constitutes a substantial public health burden with ∼20 million human infections annually, including 3.3 million symptomatic cases. Appropriate treatment options for, in particular, HEV-infected immunocompromised patients and pregnant women are lacking, underscoring the urgent need for potent and safe antiviral drugs.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB) is a major global health issue, with ongoing research aimed at developing new anti-TB medications that effectively target the disease.
  • Scientists created an open-access database containing genetic variations from over 50,000 clinical TB isolates to help understand resistance mutations seen in real-world scenarios.
  • The analysis of this database showed how specific genetic variations relate to drug resistance and the importance of genetic diversity in drug targets, making it a useful tool for drug discovery and development.
View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains.

View Article and Find Full Text PDF

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a major threat to global health. Although the World Health Organization ended the public health emergency status, antiviral drugs are needed to address new variants of SARS-CoV-2 and future pandemics. To identify novel broad-spectrum coronavirus drugs, we developed a high-content imaging platform compatible with high-throughput screening.

View Article and Find Full Text PDF

While progress has been made in fighting diseases disproportionally affecting underserved populations, unmet medical needs persist for many neglected tropical diseases. The World Health Organization has encouraged strong public-private partnerships to address this issue and several public and private organizations have set an example in the past showing a strong commitment to combat these diseases. Pharmaceutical companies are contributing in different ways to address the imbalance in research efforts.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a seasonal virus that infects the lungs and airways of 64 million children and adults every year. It is a major cause of acute lower respiratory tract infection and is associated with significant morbidity and mortality. Despite the large medical and economic burden, treatment options for RSV-associated bronchiolitis and pneumonia are limited and mainly consist of supportive care.

View Article and Find Full Text PDF

In the search for novel influenza inhibitors we evaluated 7-fluoro-substituted indoles as bioisosteric replacements for the 7-azaindole scaffold of Pimodivir, a PB2 (polymerase basic protein 2) inhibitor currently in clinical development. Specifically, a 5,7-difluoroindole derivative was identified as a potent and metabolically stable influenza inhibitor. demonstrated a favorable oral pharmacokinetic profile and in vivo efficacy in mice.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) disease has no effective treatment. JNJ-53718678 is a fusion inhibitor with selective activity against RSV.

Methods: After confirmation of RSV infection or 5 days after inoculation with RSV, participants (n = 69) were randomized to JNJ-53718678 75 mg (n = 15), 200 mg (n = 17), 500 mg (n = 18), or placebo (n = 17) orally once daily for 7 days.

View Article and Find Full Text PDF

Respiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure-activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors.

View Article and Find Full Text PDF

Drug-resistant mycobacterial infections are a serious global health challenge, leading to high mortality and socioeconomic burdens in developing countries worldwide. New innovative approaches, from identification of new targets to discovery of novel chemical scaffolds, are urgently needed. Recently, energy metabolism in mycobacteria, in particular the oxidative phosphorylation pathway, has emerged as an object of intense microbiological investigation and as a novel target pathway in drug discovery.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) is more prevalent today than at any other time in human history. Bedaquiline (BDQ), a novel Mycobacterium-specific adenosine triphosphate (ATP) synthase inhibitor, is the first drug in the last 40 years to be approved for the treatment of MDR-TB. This bactericidal compound targets the membrane-embedded rotor (c-ring) of the mycobacterial ATP synthase, a key metabolic enzyme required for ATP generation.

View Article and Find Full Text PDF

Targeting respiration and ATP synthesis has received strong interest as a new strategy for combatting drug-resistant Mycobacterium tuberculosis. Mycobacteria employ a respiratory chain terminating with two branches. One of the branches includes a cytochrome bc1 complex and an aa3-type cytochrome c oxidase while the other branch terminates with a cytochrome bd-type quinol oxidase.

View Article and Find Full Text PDF

Background: The study assessed the antiviral activity of TMC353121, a respiratory syncytial virus (RSV) fusion inhibitor, in a preclinical non-human primate challenge model with a viral shedding pattern similar to that seen in humans, following continuous infusion (CI).

Methods: African green monkeys were administered TMC353121 through CI, in 2 studies. Study 1 evaluated the prophylactic and therapeutic efficacy of TMC353121 at a target plasma level of 50 ng/mL (n=15; Group 1: prophylactic arm [Px50], 0.

View Article and Find Full Text PDF

Objectives: It is not fully understood why inhibiting ATP synthesis in Mycobacterium species leads to death in non-replicating cells. We investigated the bactericidal mode of action of the anti-tubercular F1Fo-ATP synthase inhibitor bedaquiline (Sirturo™) in order to further understand the lethality of ATP synthase inhibition.

Methods: Mycobacterium smegmatis strains were used for all the experiments.

View Article and Find Full Text PDF

Bedaquiline (BDQ), an ATP synthase inhibitor, is the first drug to be approved for treatment of multi-drug resistant tuberculosis in decades. In vitro resistance to BDQ was previously shown to be due to target-based mutations. Here we report that non-target based resistance to BDQ, and cross-resistance to clofazimine (CFZ), is due to mutations in Rv0678, a transcriptional repressor of the genes encoding the MmpS5-MmpL5 efflux pump.

View Article and Find Full Text PDF

Bedaquiline (BDQ), an ATP synthase inhibitor, is the first drug to be approved for treatment of multidrug-resistant tuberculosis in decades. Though BDQ has shown excellent efficacy in clinical trials, its early bactericidal activity during the first week of chemotherapy is minimal. Here, using microfluidic devices and time-lapse microscopy of Mycobacterium tuberculosis, we confirm the absence of significant bacteriolytic activity during the first 3-4 days of exposure to BDQ.

View Article and Find Full Text PDF

Discovery of new antibacterial agents is crucial to counter the challenge of drug-resistant bacterial infections. In this review we discuss the issue of bacterial metabolic resting states, observed for a variety of pathogenic bacteria, which display low susceptibility for most antibacterials. We present examples of how bacterial metabolic states may be controlled, target pathways may be validated and screening on metabolically resting bacteria can be designed.

View Article and Find Full Text PDF

Emergence of drug-resistant bacteria represents a high, unmet medical need, and discovery of new antibacterials acting on new bacterial targets is strongly needed. ATP synthase has been validated as an antibacterial target in Mycobacterium tuberculosis, where its activity can be specifically blocked by the diarylquinoline TMC207. However, potency of TMC207 is restricted to mycobacteria with little or no effect on the growth of other Gram-positive or Gram-negative bacteria.

View Article and Find Full Text PDF

Infections with Mycobacterium tuberculosis are substantially increasing on a worldwide scale and new antibiotics are urgently needed to combat concomitantly emerging drug-resistant mycobacterial strains. The diarylquinoline TMC207 is a highly promising drug candidate for treatment of tuberculosis. This compound kills M.

View Article and Find Full Text PDF

Tuberculosis (TB) is more prevalent in the world today than at any other time in human history. Mycobacterium tuberculosis, the pathogen responsible for TB, uses diverse strategies to survive in a variety of host lesions and to evade immune surveillance. A key question is how robust are our approaches to discovering new TB drugs, and what measures could be taken to reduce the long and protracted clinical development of new drugs.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants, young children, elderly persons, and severely immunocompromised patients. Effective postinfection treatments are not widely available, and currently there is no approved vaccine. TMC353121 is a potent RSV fusion inhibitor in vitro, and its ability to reduce viral loads in vivo was demonstrated in cotton rats following prophylactic intravenous administration.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session677o06hfafj4udasg7gccfqr2uvtilpm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once