Publications by authors named "Anil K Panigrahi"

Background: Bleeding during cardiac surgery may be refractory to standard interventions. Off-label use of factor eight inhibitor bypass activity (FEIBA) has been described to treat such bleeding. However, reports of safety, particularly thromboembolic outcomes, show mixed results, and reported cohorts have been small.

View Article and Find Full Text PDF

Enhancers not only activate target promoters to stimulate messenger RNA (mRNA) synthesis, but they themselves also undergo transcription to produce enhancer RNAs (eRNAs), the significance of which is not well understood. Transcription at the participating enhancer-promoter pair appears coordinated, but it is unclear why and how. Here, we employ cell-free transcription assays using constructs derived from the human locus to demonstrate that transcription at an enhancer and its target promoter is interdependent.

View Article and Find Full Text PDF

We report the quaternary structure of core transcriptional complex for the full-length human progesterone receptor-B (PR-B) homodimer with primary coactivator steroid receptor coactivator-2 (SRC-2) and the secondary coactivator p300/CREB-binding protein (CBP). The PR-B homodimer engages one SRC-2 mainly through its activation function 1 (AF1) in N-terminus. SRC-2 is positioned between PR-B and p300 leaving space for direct interaction between PR-B and p300 through PR-B's C-terminal AF2 and its unique AF3.

View Article and Find Full Text PDF

Introduction:  Large-bore cannulas are critical to administering IV fluids and blood products during resuscitation and treatment of hemorrhage. Although catheter flow rates for crystalloid solutions are well defined, rapid administration of blood products is poorly characterized. In this in vitro study, we examined the effects of hemodilution and needleless connectors on red blood cell (RBC) flow rates.

View Article and Find Full Text PDF

Epigenetic reprogramming in Acute Myeloid Leukemia (AML) leads to the aberrant activation of super enhancer (SE) landscapes that drive the expression of key oncogenes, including the oncogenic MYC pathway. These SEs have been identified as promising therapeutic targets, and have given rise to a new class of drugs, including BET protein inhibitors, which center on targeting SE activity. NR4A nuclear receptors are tumor suppressors of AML that function in part through transcriptional repression of the MYC-driven oncogenic program via mechanisms that remain unclear.

View Article and Find Full Text PDF

Enhancers are thought to activate transcription by physically contacting promoters via looping. However, direct assays demonstrating these contacts are required to mechanistically verify such cellular determinants of enhancer function. Here, we present versatile cell-free assays to further determine the role of enhancer-promoter contacts (EPCs).

View Article and Find Full Text PDF

Background: The incidence of placenta accreta (PA) has increased from 0.8 to 3.0 in 1000 pregnancies, driven by increased rates of cesarean deliveries (32.

View Article and Find Full Text PDF

Transfusion of red blood cells (RBCs) is a balance between providing benefit for patients while avoiding risks of transfusion. Randomized, controlled trials of restrictive RBC transfusion practices have shown equivalent patient outcomes compared with liberal transfusion practices, and meta-analyses have shown improved in-hospital mortality, reduced cardiac events, and reduced bacterial infections. This body of level 1 evidence has led to substantial, improved blood utilization and reduction of inappropriate blood transfusions with implementation of clinical decision support via electronic medical records, along with accompanying educational initiatives.

View Article and Find Full Text PDF
Article Synopsis
  • Wiskott-Aldrich syndrome (WAS) is an X-linked disorder that affects immune function and is linked to autoimmunity and cytopenias due to defective WAS protein (WASp).
  • Research on WASp-deficient mice and human subjects shows abnormal B cell receptor (BCR) usage and a prevalence of low-affinity self-reactive antibodies among naive B cells.
  • Findings indicate enhanced proliferation of transitional B cells in WAS, suggesting that altered signaling pathways contribute to the positive selection of self-reactive B cells, which may disrupt normal B cell tolerance.
View Article and Find Full Text PDF

Intensive research has been directed at the discovery, biogenesis, and expression patterns of long noncoding RNAs , yet their biochemical functions have remained elusive for the most part. Nuclear receptors that interpret signaling mediated by small molecule hormones play a role in regulating the expression of some long noncoding RNAs. More importantly, these RNAs have also been shown to effect hormone-affected gene transcription regulated by the nuclear receptors.

View Article and Find Full Text PDF

The in vivo functions of the bacteriophage T4 Mre11/Rad50 (MR) complex (gp46/47) in double-strand-end processing, double-strand break repair, and recombination-dependent replication were investigated. The complex is essential for T4 growth, but we wanted to investigate the in vivo function during productive infections. We therefore generated a suppressed triple amber mutant in the Rad50 subunit to substantially reduce the level of complex and thereby reduce phage growth.

View Article and Find Full Text PDF

Site-specific proteolysis of the N or C-terminus of histone tails has emerged as a novel form of irreversible post-translational modifications assigned to histones. Though there are many reports describing histone specific proteolysis, there are very few studies on purification of a histone specific protease. Here, we demonstrate a histone H3 specific protease (H3ase) activity in chicken liver nuclear extract.

View Article and Find Full Text PDF

Hematopoiesis-the process that generates distinct lineage-committed blood cells from a single multipotent hematopoietic stem cell-is a complex process of cellular differentiation regulated by a set of dynamic transcriptional programs. Cytokines and growth factors, transcription factors, chromatin remodeling, and modifying enzymes have been suggested to enact critical roles during hematopoiesis, leading to the development of myeloid, lymphoid, erythroid and platelet precursors. How is such a complex process orchestrated? Is there a higher order of hematopoiesis regulation? These are some of the unresolved questions in the field of hematopoiesis.

View Article and Find Full Text PDF

The cohesin complex holds the sister chromatids together from S-phase until the metaphase-to-anaphase transition, and ensures both their proper cohesion and timely separation. In addition to its canonical function in chromosomal segregation, cohesin has been suggested by several lines of investigation in recent years to play additional roles in apoptosis, DNA-damage response, transcriptional regulation and haematopoiesis. To better understand the basis of the disparate cellular functions of cohesin in these various processes, we have characterized a comprehensive protein interactome of cohesin-RAD21 by using three independent approaches: Y2H (yeast two-hybrid) screening, immunoprecipitation-coupled-MS of cytoplasmic and nuclear extracts from MOLT-4 T-lymphocytes in the presence and absence of etoposide-induced apoptosis, and affinity pull-down assays of chromatographically purified nuclear extracts from pro-apoptotic MOLT-4 cells.

View Article and Find Full Text PDF

The PTPN22 genetic variant 1858T, encoding Lyp620W, is associated with multiple autoimmune disorders for which the production of autoantibodies is a common feature, suggesting a loss of B cell tolerance. Lyp620W results in blunted BCR signaling in memory B cells. Because BCR signal strength is tightly coupled to central and peripheral tolerance, we examined whether Lyp620W impacts peripheral B cell homeostasis in healthy individuals heterozygous for the PTPN221858T variant.

View Article and Find Full Text PDF

Unlike in budding yeast, sister chromatid cohesion in vertebrate cells is resolved in two steps: cohesin complexes are removed from sister chromatid arms during prophase via phosphorylation, whereas centromeric cohesins are removed at anaphase by Separase. Phosphorylation of cohesin subunit SA2 by polo-like kinase 1 (Plk1) is required for the removal of cohesins at prophase, but how Plk1 is recruited to phosphorylate SA2 during prophase is currently not known. Here we report that Sororin, a cohesin-interacting protein essential for sister chromatid cohesion, plays a novel role in the resolution of sister chromatid arms by direct interaction with Plk1.

View Article and Find Full Text PDF

Defining the mechanisms of chromosomal cohesion and dissolution of the cohesin complex from chromatids is important for understanding the chromosomal missegregation seen in many tumor cells. Here we report the identification of a novel cohesin-resolving protease and describe its role in chromosomal segregation. Sister chromatids are held together by cohesin, a multiprotein ring-like complex comprised of Rad21, Smc1, Smc3, and SA2 (or SA1).

View Article and Find Full Text PDF

Separase, an endopeptidase, plays a pivotal role in the separation of sister chromatids at anaphase by cleaving its substrate cohesin Rad21. Recent study suggests that separase is an oncogene. Overexpression of separase induces aneuploidy and mammary tumorigenesis in mice.

View Article and Find Full Text PDF

To better understand whether autoimmunity in Lyn-deficient mice arises from compromised central or peripheral B cell tolerance, we examined BCR signaling properties of wild-type and Lyn-deficient B cells at different stages of development. Wild-type mature follicular B cells were less sensitive to BCR stimulation than were immature transitional stage 1 B cells with regard to BCR-induced calcium elevation and ERK MAPK activation. In the absence of Lyn, mature B cell signaling was greatly enhanced, whereas immature B cell signaling was minimally affected.

View Article and Find Full Text PDF

Genomic instability, aberrant cell proliferation and defects in apoptotic cell death are critical issues in cancer. The two most prominent hallmarks of cancer cells are multiple mutations in key genes encoding proteins that regulate important cell-survival pathways, and marked restructuring or redistribution of the chromosomes (aneuploidy) indicative of genomic instability. Both these aspects have been suggested to cause cancer, though a causal role for chromosomal restructuring in tumorigenesis has not been experimentally fully substantiated.

View Article and Find Full Text PDF

Continued antibody gene rearrangement, termed receptor editing, is an important mechanism of central B cell tolerance that may be defective in some autoimmune individuals. We describe a quantitative assay for recombining sequence (RS) rearrangement that we use to estimate levels of antibody light chain receptor editing in various B cell populations. RS rearrangement is a recombination of a noncoding gene segment in the kappa antibody light chain locus.

View Article and Find Full Text PDF