Escherichia coli, a commensal mesophile that primarily inhabits the gastro-intestinal tract, responds to temperature up-shifts with transient expression of stress-response proteins. The goal of this study was to identify adaptive proteins of E. coli O157 crucial for growth resumption of this human pathogen after heat shock, with specific focus on the role of the RpoS sigma factor.
View Article and Find Full Text PDFInt J Food Microbiol
March 2011
Phenotypic analyses were performed using an enterohemorrhagic Escherichia coli O157 (EHEC) strain (B-1) and a commensal E. coli K-12 strain, exposed to prolonged cold stress. The EHEC E.
View Article and Find Full Text PDFCellular morphology, exopolymer chemistry, and protein expression of shearable and nonshearable fractions of Salmonella enterica serovar Enteritidis biofilms were examined. Biofilms were grown at a laminar flow velocity of 0.07 cm.
View Article and Find Full Text PDFThis study examined the adaptive response and survival of planktonic and biofilm phenotypes of Salmonella enterica serovar Enteritidis adapted to benzalkonium chloride (BC). Planktonic cells and biofilms were continuously exposed to 1 microg ml(-1) of BC for 144 h. The proportion of BC-adapted biofilm cells able to survive a lethal BC treatment (30 microg ml(-1)) was significantly higher (4.
View Article and Find Full Text PDFSalmonella enterica serovar Enteritidis is a significant biofilm-forming pathogen. The influence of a 10-fold difference in nutrient laminar flow velocity on the dynamics of Salmonella Enteritidis biofilm formation and protein expression profiles were compared in order to ascertain how flow velocity influenced biofilm structure and function. Low-flow (0.
View Article and Find Full Text PDFThe development of adaptive resistance of Salmonella enterica serovar Enteritidis ATCC 4931 biofilms following exposure to benzalkonium chloride (BC) either continuously (1 microg ml(-1)) or intermittently (10 microg ml(-1) for 10 min daily) was examined. Biofilms adapted to BC over a 144-h period could survive a normally lethal BC challenge (500 microg ml(-1) for 10 min) and then regrow, as determined by increases in biofilm thickness, total biomass, and the ratio of the viable biomass to the nonviable biomass. Exposure of untreated control biofilms to the lethal BC challenge resulted in biofilm erosion and cell death.
View Article and Find Full Text PDF