Sarcopenia is the loss of muscle mass and strength which occurs with aging. Whether the molecular basis of sarcopenia differs with muscle type and across sex is not well understood. Here we examine how aging affects the regulation of protein kinase B (Akt), the mammalian target of rapamycin (mTOR), AMP activated kinase (AMPK), p70 ribosomal S6 kinase (p70s6k), S6 ribosomal protein (rps6) and calcineurin (CaN) in the slow soleus and fast extensor digitorum longus (EDL) muscles of 6- (adult), 30- (aged), and 36-month (very aged) male and 6- (adult), 26- (aged), and 30-month (very aged) female Fischer 344xBrown Norway (F344BN) rats.
View Article and Find Full Text PDFThe effect of insulin resistance (IR) on the adaptation of skeletal muscle loading is not well understood. Here we examine whether the soleus muscles of the lean Zucker (LZ) and insulin-resistant obese Zucker (OZ) rat exhibit differences in their ability to undergo muscle hypertrophy following 8 wk of mechanical overload. Four-week-old male LZ (n = 5) and OZ (n = 5) rats underwent unilateral surgical ablation of the gastrocnemius muscle while the contralateral hindlimb was used as an internal control.
View Article and Find Full Text PDFIron-induced cardiovascular disease is the leading cause of death in iron-overloaded patients. Deferasirox is a novel, once daily oral iron chelator that was recently approved for the treatment of transfusional iron overload. Here, we investigate whether deferasirox is capable of removing cardiac iron and improving iron-induced pathogenesis of the heart using the iron overload gerbil model.
View Article and Find Full Text PDFBackground: Aging-related hyperglycemia is associated with increased oxidative stress and diminished muscle glucose transporter-4 (Glut4) that may be regulated, at least in part, by the mitogen-activated protein kinases (MAPK).
Methods: To test the possibility that aging-related hyperglycemia can be prevented by pharmacological manipulation of MAPK hyperactivation, aged (27-month old) Fischer 344/NNiaHSD x Brown Norway/BiNia F1 (F344BN) rats were administered acetaminophen (30 mg/kg body weight/day) for 6 months in drinking water.
Results: Hepatic histopathology, serum aspartate aminotransferase and alanine aminotransferase analyses suggested that chronic acetaminophen did not cause hepatotoxicity.