Publications by authors named "Anil H Kadam"

Article Synopsis
  • The study investigates the effects of different doses of bleomycin in a mouse model to understand lung fibrosis, examining various health outcomes over a 14-day period.
  • It was found that doses between 0.25-0.5 U/kg led to significant weight loss and increased pulmonary inflammation, while 3 U/kg caused 100% mortality.
  • Lower doses (0.1 U/kg) resulted in mild changes, indicating that certain doses can induce noticeable fibrotic changes without causing death, making them ideal for further research.
View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix (ECM), causing lung distortions and dysfunction. Animal models of human IPF can provide great insight into the mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches. In this study, we describe the effect of bleomycin concentration on disease progression in the classical rat bleomycin model.

View Article and Find Full Text PDF

Introduction: We investigated the potential of LPS (10-300 µg/rat) administered intratracheally (i.t.) to induce reproducible features of acute lung injury (ALI) and compared the pharmacological efficacy of anti-inflammatory glucocorticoids and antifibrotic drugs to reduce the disease.

View Article and Find Full Text PDF

The aim of this study was to describe and characterize the pathophysiological changes occurring during the early inflammatory phase (first 3 days) in the rat bleomycin model of lung injury preceding the development of fibrosis. Further, we wanted to understand the kinetics and factors contributing to bleomycin-induced acute lung injury (ALI) and provide a robust, reliable and reproducible framework of features of ALI readouts to assess effects of therapeutics on bleomycin-induced ALI in rats. We induced ALI in rats with intratracheal (i.

View Article and Find Full Text PDF

The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-β effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model.

View Article and Find Full Text PDF