Publications by authors named "Anil D Naik"

By limiting the heat spread during a fire hazard, intumescent coatings are important components of passive protection systems. They swell due to heat induced reactions of micro constituents and are transformed into carbonaceous porous-like media, known as intumescent chars. Their multiscale inner structures, key elements of performance, are costly to predict by recurrent and large scale fire testing while numerical simulations are challenging due to complex kinetics.

View Article and Find Full Text PDF

The contribution of copper complexes of salen-based Schiff bases N, N'-bis(salicylidene)ethylenediamine (C1), N, N'-bis(4-hydroxysalicylidene)ethylenediamine (C2), and N, N'-bis(5-hydroxysalicylidene)ethylenediamine (C3) to the flame retardancy of thermoplastic polyurethane (TPU) is investigated in the context of minimizing the inherent flammability of TPU. Thermal and fire properties of TPU are evaluated. It is observed that fire performances vary depending upon the substitution of the salen framework.

View Article and Find Full Text PDF

Reported herein the binding affinity between Human Serum Albumin and the DNA binding and cleavage activity of three copper(II) complexes, [Cu(phen)(o-van)ClO] (1), [Cu(phen)(gly)]ClO (2) and [Cu(L)(HO)] (3) wherein 1 and 2 are synthesized with 1,10-phenanthroline (phen) and co-ligands (o-van: o-vanillin; gly: glycine) and 3 with a ligand 2-hydroxy-3-methoxybenzylidene-4H-1,2,4-triazol-4-amine (HL). Complex 2 crystallizes in monoclinic (P21/n) space group shows square pyramidal geometry. The complex 3 crystallizes in monoclinic (P21/a) space group.

View Article and Find Full Text PDF

A new family of one-dimensional Fe(II) 1,2,4-triazole spin transition coordination polymers for which a modification of anion and crystallization solvent can tune the switching temperature over a wide range, including the room temperature region, is reported. This series of materials was prepared as powders after reaction of ethyl-4H-1,2,4-triazol-4-yl-acetate (αEtGlytrz) with an iron salt from a MeOH/H2O medium affording: [Fe(αEtGlytrz)3](ClO4)2 (1); [Fe(αEtGlytrz)3](ClO4)2·CH3OH (2); [Fe(αEtGlytrz)3](NO3)2·H2O (3); [Fe(αEtGlytrz)3](NO3)2 (4); [Fe(αEtGlytrz)3](BF4)2·0.5H2O (5); [Fe(αEtGlytrz)3](BF4)2 (6); and [Fe(αEtGlytrz)3](CF3SO3)2·2H2O (7).

View Article and Find Full Text PDF

A broad spectrum of applications of "Salen"-based Schiff bases tagged them as versatile multifunctional materials. However, their applicability is often bounded by a temperature threshold and, thus, they have rarely been used for high temperature applications. Our investigation of a classical Schiff base, N,N'-bis(4-hydroxysalicylidene)ethylenediamine (L2), reveals that it displays an intriguingly combative response to an elevated temperature/fire scenario.

View Article and Find Full Text PDF

A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2⋅2 H2O (1⋅2 H2O), whose precursor βAlatrz, (1,2,4-triazol-4-yl-propionate) has been tailored from a β-amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), (57)Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two-step spin crossover (T1/2(↓) = 230 K and T1/2(↑) = 235 K, and T1/2(↓) = 172 K and T1/2(↑) = 188 K, respectively) is registered for the first time for a 1,2,4-triazole-based Fe(II) 1D coordination polymer. The two-step SCO configuration is observed in a 1:2 ratio of low-spin/high-spin in the intermediate phase for a 1D chain.

View Article and Find Full Text PDF

A conformationally flexible triazole-carboxylic acid ligand derived from an L-amino acid, namely, 4 H-1,2,4-triazol-4-yl-acetic acid (αHGlytrz), has been exploited to synthesize a structurally diverse and functionally intriguing metal-organic framework with CuSiF6. The crystal structure reveals a novel single-walled metal-organic nanotube (SWMONT), namely, {[Cu3(μ3-OH)(H2O)3(Glytrz)3]⋅SiF6⋅8 H2O⋅X}∞ (1), (where X = disordered lattice water molecules) having a pore size as large as zeolites. Compound 1 was synthesized as crystals, as powder, or as layers by precipitation/electrodeposition.

View Article and Find Full Text PDF

A mononuclear iron(II) neutral complex (1) is screened for sensing abilities for a wide spectrum of chemicals and to evaluate the response function toward physical perturbation like temperature and mechanical stress. Interestingly, 1 precisely detects methanol among an alcohol series. The sensing process is visually detectable, fatigue-resistant, highly selective, and reusable.

View Article and Find Full Text PDF

The past decade has witnessed intense research activity in the area of Fe(II) spin crossover coordination polymers, which are structurally diverse and functionally intriguing materials. In this endeavor, a less exploited series of ligands have been selected among various N-donor triazole and tetrazole molecules. Developing conventions that allow the tailoring of such functional materials with predictable architecture and properties is an important objective and current interest in crystal engineering.

View Article and Find Full Text PDF

Mind the gap: A complete, cooperative spin transition for a mononuclear Mn(III) complex is reported with an 8 K hysteresis window. Raman spectra collected at a single temperature in warming and cooling modes confirm the electronic bistability within the hysteresis loop. The source of the cooperativity is a disconnection in the hydrogen-bonded 1D chains that connect adjacent cations owing to an order-disorder transition in the PF(6)(-) counterion.

View Article and Find Full Text PDF

A β-aminoacid ester was successfully derivatized to yield to 4H-1,2-4-triazol-4-yl-propionate (βAlatrz) which served as a neutral bidentate ligand in the 1D coordination polymer [Fe(βAlatrz)(3)](CF(3)SO(3))(2)·0.5H(2)O (1·0.5H(2)O).

View Article and Find Full Text PDF

The first crystal structures of a dinuclear iron(II) complex with three N1,N2-1,2,4-triazole bridges in the high-spin and low-spin states are reported. Its sharp spin transition, which was probed using X-ray, calorimetric, magnetic, and (57)Fe Mossbauer analyses, is also delineated in the crystalline state by variable-temperature fluorimetry for the first time.

View Article and Find Full Text PDF

A novel iron(II) mononuclear spin transition complex [FeL(py)(2)] displays an abrupt spin transition around 225 K accompanied by a very wide thermal hysteresis loop (∼50 K) that spreads out over 100 K. Crystal structure analysis in both low-spin and high-spin states reveals a lipid layer-like arrangement of the complex molecules and provides insights into the spin switching mechanism.

View Article and Find Full Text PDF

The vibrational properties of the trimeric iron complex [Fe(3)(4-(2'-hydroxy-ethyl)-1,2,4-triazole)(6)(H(2)O)(6)](CF(3)SO(3))(6) which serves as a model of the 1D iron coordination polymers based on 1,2,4-triazoles have been investigated by nuclear inelastic scattering of synchrotron radiation (NIS), as well as by Raman and infrared (IR) spectroscopy. The system reveals a soft spin crossover involving only the central iron atom with its FeN(6) core, while the terminal FeN(3)O(3) units show no spin transition. The NIS spectra of the central low-spin isomer exhibit a number of marker bands in the 350-450 cm(-1) region which have not been detected in the Raman spectra.

View Article and Find Full Text PDF

The thermally induced hysteretic spin transition (ST) that occurs in the polymeric chain compound [Fe(NH(2)trz)(3)](NO(3))(2) (1) above room temperature (T(c)(upward arrow) = 347 K, T(c)(downward arrow) = 314 K) has been tracked by (57)Fe Mössbauer spectroscopy, SQUID magnetometry, differential scanning calorimetry (DSC), and X-ray powder diffraction (XPRD) at variable temperatures. From the XRPD pattern indexation, an orthorhombic primitive cell was observed with the following cell parameters: a = 11.83(2) A, b = 9.

View Article and Find Full Text PDF

The colorimetric analysis of images recorded with an optical microscope during the onset of the spin crossover transformation allows monitoring separately the involved electronic and structural aspects, through the separation of resonant absorption and scattering effects. Complementary information can also be obtained by using the polarized modes of the microscope. These potentialities are illustrated by the observation of [Fe(ptz)(6)](BF(4))(2) single crystals during the onset of the thermal transitions in the 110-140 K range.

View Article and Find Full Text PDF

The relationships between the crystal structure and optical properties of switchable N-salicylideneanils have been revised and discussed on the basis of new experimental results and a computational approach. N-salicylidene-3-aminopyridine (L(3)) is a versatile thermo- and photochromic molecule. It also exhibits an infinitely slow thermal back relaxation (k = 9.

View Article and Find Full Text PDF

A new binucleating ligand containing phenoxide as an endogenous bridging group, 2,6-diformyl-p-cresol bis(2-furanthiocarboxyhydrazone) and its binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes with chloride ion as an exogenous bridge, have been obtained. The complexes were characterized by elemental analysis, molar conductivities, magnetic moment measurements at room temperature, electronic, IR, 1H-NMR, EPR, FAB spectral studies and thermal data. The copper complex assumes a tetranuclear structure composed of two binuclear units related by a center of symmetry.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Anil D Naik"

  • - Anil D Naik's research predominantly focuses on materials for thermal protection and flame retardancy, particularly through the development and analysis of intumescent fire barriers and novel copper complexes that enhance the fire resistance of thermoplastic polyurethane.
  • - His studies involve advanced techniques such as deep electron paramagnetic resonance spectroscopy and simulations to improve the understanding of material behaviors under fire conditions, as well as to identify structure-performance relationships in spin transition coordination polymers.
  • - Naik's work also emphasizes the significance of synthetic coordination polymers and bio-affinity interactions, contributing to the fields of crystal engineering and molecular sensing, which are vital for improving safety standards in material applications.