Publications by authors named "Anil C Somenahally"

Soil is a vital component of the ecosystem that drives the holistic homeostasis of the environment. Directly, soil quality and health by means of sufficient levels of soil nutrients are required for sustainable agricultural practices for ideal crop yield. Among these groups of nutrients, soil carbon is a factor which has a dominating effect on greenhouse carbon phenomena and thereby the climate change rate and its influence on the planet.

View Article and Find Full Text PDF

Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a bioaccumulative toxic contaminant in many ecosystems, but factors governing its production are poorly understood. Recent work has shown that the anaerobic microbial conversion of mercury (Hg) to MeHg requires the Hg-methylation genes and that these genes can be used as biomarkers in PCR-based estimators of Hg-methylator abundance. In an effort to determine reliable methods for assessing abundance and diversity and linking them to MeHg concentrations, multiple approaches were compared including metagenomic shotgun sequencing, 16S rRNA gene pyrosequencing and cloning/sequencing gene products.

View Article and Find Full Text PDF

Neurotoxic methylmercury (MeHg) is produced by anaerobic and possessing the genes , but it is unknown how organic substrate and electron acceptor availability impacts the distribution and abundance of these organisms. We evaluated the impact of organic substrate amendments on mercury (Hg) methylation rates, microbial community structure, and the distribution of microbes with sediments. Sediment slurries were amended with short-chain fatty acids, alcohols, or a polysaccharide.

View Article and Find Full Text PDF

Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in >3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential.

View Article and Find Full Text PDF

Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA.

View Article and Find Full Text PDF

Microbial mercury (Hg) methylation transforms a toxic trace metal into the highly bioaccumulated neurotoxin methylmercury (MeHg). The lack of a genetic marker for microbial MeHg production has prevented a clear understanding of Hg-methylating organism distribution in nature. Recently, a specific gene cluster (hgcAB) was linked to Hg methylation in two bacteria.

View Article and Find Full Text PDF

Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized.

View Article and Find Full Text PDF