Publications by authors named "Aniksztejn L"

De novo missense variants in the KCNQ2 gene encoding the Kv7.2 subunit of voltage-gated potassium Kv7/M channels are the main cause of developmental and epileptic encephalopathy with neonatal onset. Although seizures usually resolve during development, cognitive/motor deficits persist.

View Article and Find Full Text PDF

The epilepsy of infancy with migrating focal seizures (EIMFS; previously called Malignant migrating partial seizures of infancy) are early-onset epileptic encephalopathies (EOEE) that associate multifocal ictal discharges and profound psychomotor retardation. EIMFS have a genetic origin and are mostly caused by mutations in the gene, and much more rarely in the gene. and respectively encode the K1.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the role of the GRIN2A gene and its GluN2A subunit in NMDARs, revealing its crucial function in brain development and its link to slow-wave sleep disorders within the epilepsy-aphasia spectrum.
  • - Researchers conducted experiments on Grin2a knockout mice to observe social communication through ultrasonic vocalizations and recorded brain electrical activity during sleep stages using EEG, discovering significant deviations in their sleep patterns.
  • - Findings suggest that the changes in vocal communication and sleep-related electrical activity in Grin2a KO mice resemble symptoms seen in children with epilepsy-aphasia spectrum disorders, supporting their use as a model for studying these conditions.
View Article and Find Full Text PDF

Objective: Kv7 channels mediate the voltage-gated M-type potassium current. Reduction of M current due to KCNQ2 mutations causes early onset epileptic encephalopathies (EOEEs). Mutations in STXBP1 encoding the syntaxin binding protein 1 can produce a phenotype similar to that of KCNQ2 mutations, suggesting a possible link between STXBP1 and Kv7 channels.

View Article and Find Full Text PDF

The solute carrier family 25 (SLC25) drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier (also named ) have been identified in early epileptic encephalopathy (EEE) and migrating partial seizures in infancy (MPSI) but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria.

View Article and Find Full Text PDF

Glutamate transporters (EAATs) are important to maintain spatial and temporal specificity of synaptic transmission. Their efficiency to uptake and transport glutamate into the intracellular space depends on several parameters including the intracellular concentrations of Na and glutamate, the elevations of which may slow down the cycling rate of EAATs. In astrocytes, glutamate is maintained at low concentration due to the presence of specific enzymes such as glutamine synthase (GS).

View Article and Find Full Text PDF

Mutations in the KCNQ2 gene encoding the voltage-gated potassium channel subunit Kv7.2 cause early onset epileptic encephalopathy (EOEE). Most mutations have been shown to induce a loss of function or to affect the subcellular distribution of Kv7 channels in neurons.

View Article and Find Full Text PDF

Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density.

View Article and Find Full Text PDF

Epileptic encephalopathies comprise a heterogeneous group of severe infantile disorders for which the pathophysiological basis of epilepsy is inaccurately clarified by genotype-phenotype analysis. Because a deficit of GABA neurons has been found in some of these syndromes, notably in patients with X-linked lissencephaly with abnormal genitalia, epilepsy was suggested to result from an imbalance in GABAergic inhibition, and the notion of "interneuronopathy" was proposed. Here, we studied the impact of a polyalanine expansion of aristaless-related homeobox (ARX) gene, a mutation notably found in West and Ohtahara syndromes.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluR) can control neuronal excitability by modulating several ionic channels. In hippocampal pyramidal cells, groups I/II mGluR are located extrasynaptically, suggesting that their endogenous activation is dependent on the glutamate clearance rate and therefore on excitatory amino-acid transporters (EAAT) efficiency. Deficiency of glutamate uptake can generate seizures in rodents and has been suggested as a mechanism of seizure generation in some human epileptic syndromes.

View Article and Find Full Text PDF

Objective: The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies.

Methods: Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery.

View Article and Find Full Text PDF

In human patients, cortical dysplasia produced by Doublecortin (DCX) mutations lead to mental retardation and intractable infantile epilepsies, but the underlying mechanisms are not known. DCX(-/-) mice have been generated to investigate this issue. However, they display no neocortical abnormality, lessening their impact on the field.

View Article and Find Full Text PDF

Developing cortical networks generate a variety of coherent activity patterns that participate in circuit refinement. Early network oscillations (ENOs) are the dominant network pattern in the rodent neocortex for a short period after birth. These large-scale calcium waves were shown to be largely driven by glutamatergic synapses albeit GABA is a major excitatory neurotransmitter in the cortex at such early stages, mediating synapse-driven giant depolarizing potentials (GDPs) in the hippocampus.

View Article and Find Full Text PDF

Cell-surface glutamate transporters are essential for the proper function of early cortical networks because their dysfunction induces seizures in the newborn rat in vivo. We have now analyzed the consequences of their inhibition by DL-TBOA on the activity of the developing CA1 rat hippocampal network in vitro. DL-TBOA generated a pattern of recurrent depolarization with an onset and decay of several seconds' duration in interneurons and pyramidal cells.

View Article and Find Full Text PDF

Purpose: To determine the electrophysiological pattern and propose a clinical relevance of a deficient glutamate transport in the developing brain.

Methods: (a) Surface EEG-video monitoring in freely moving pups; (b) intracortical multiple unit activity (MUA) and local field potential recordings in 5- to 7-day-old rats after pharmacological inhibition of the glutamate transporters by DL-TBOA.

Results: Glutamate transporters inhibition alters the background cortical electrical activity inducing a dominant and persistent pattern of bilateral recurrent paroxysmal bursts alternating with periods of hypoactivity and also partial seizures.

View Article and Find Full Text PDF

Paracrine GABA and glutamate acting, respectively, on GABAA and NMDA receptors modulate the migration of hippocampal pyramidal cells. Using corticohippocampal organotypic explants from glutamic acid decarboxylase (GAD) 67-enhanced green fluorescent protein (EGFP) knock-in embryos, we now report that, in contrast to pyramidal neurons, the blockade of AMPA but not NMDA receptors exerts important actions on the migration of GABAergic interneurons. In addition, the blockade of GABAA receptors fails to modify the migration rates of GABAergic interneurons.

View Article and Find Full Text PDF

Immature neurons express GABA and glutamate receptors before synapse formation, and both transmitters are released at an early developmental stage. We have now tested the hypothesis that the ongoing release of GABA and glutamate modulates neuronal migration. Using 5-bromo-2'-deoxyuridine labeling and cocultures of hippocampal slices obtained from naive and green fluorescent protein-transgenic mice, we report that migration is severely affected by GABA(A) or NMDA receptor antagonist treatments.

View Article and Find Full Text PDF

Glutamate transporters are operative at an early developmental stage well before synapse formation, but their functional significance has not been determined. We now report that blockade of glutamate transporters in the immature neocortex generates recurrent NMDA receptor-mediated currents associated with synchronous oscillations of [Ca2+]i in the entire neuronal population. Intracerebroventricular injections of the blocker to pups generate seizures that are prevented by coinjections of NMDA receptor blockers.

View Article and Find Full Text PDF

GABA and glutamate receptors are expressed in immature "silent" CA1 pyramidal neurons prior to synapse formation, but their function is unknown. We now report the presence of tonic, spontaneous, and evoked currents in embryonic and neonatal CA1 neurons mediated primarily by the activation of GABA(A) receptors. These currents are mediated by a nonconventional release of transmitters, as they persist in the presence of calcium channel blockers or botulinium toxin and are observed in Munc18-1-deficient mice in which vesicular release is abolished.

View Article and Find Full Text PDF

Rat perinatal (E20-P0) CA1 pyramidal neurons were either synaptically active or silent. We show here that, during this developmental period, active but not silent cells form recurrent axon-collaterals that invade the radiatum and the lacunosum moleculare strata. These recurrents were never observed in adult rats.

View Article and Find Full Text PDF

We have performed a morphofunctional analysis of CA1 pyramidal neurons at birth to examine the sequence of formation of GABAergic and glutamatergic postsynaptic currents (PSCs) and to determine their relation to the dendritic arborization of pyramidal neurons. We report that at birth pyramidal neurons are heterogeneous. Three stages of development can be identified: (1) the majority of the neurons (80%) have small somata, an anlage of apical dendrite, and neither spontaneous nor evoked PSCs; (2) 10% of the neurons have a small apical dendrite restricted to the stratum radiatum and PSCs mediated only by GABA(A) receptors; and (3) 10% of the neurons have an apical dendrite that reaches the stratum lacunosum moleculare and PSCs mediated both by GABA(A) and glutamate receptors.

View Article and Find Full Text PDF

We have examined the rapid development of synaptic transmission at the neuromuscular junction (NMJ) in zebrafish embryos and larvae by patch-clamp recording of spontaneous miniature endplate currents (mEPCs) and single acetylcholine receptor (AChR) channels. Embryonic (24-36 h) mEPCs recorded in vivo were small in amplitude (<50 pA). The rate of mEPCs increased in larvae (3.

View Article and Find Full Text PDF

1. We have examined the effects of tyrosine phosphorylation on a spontaneously active cation channel that also participates in the modulation of pressure-sensitive (P) neurons in the leech. Cation channel activity in cell-attached or isolated, inside-out membrane patches from P cells in culture was monitored before and after treatments that altered the level of tyrosine phosphorylation.

View Article and Find Full Text PDF

1. We have tested, in CA1 hippocampal slices, the hypothesis that the expression of long-term potentiation (LTP) by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and/or N-methyl-D-aspartate (NMDA) receptors depends on the degree of NMDA receptors activation during the tetanus. 2.

View Article and Find Full Text PDF