Publications by authors named "Aniko Zsak"

Background: Avian influenza is a highly contagious, agriculturally relevant disease that can severely affect the poultry industry and food supply. Eurasian-origin H5Nx highly pathogenic avian influenza viruses (HPAIV) (clade 2.3.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) technologies are a valuable tool to monitor changes in viral genomes and determine the genetic heterogeneity of viruses. In this study, NGS was applied to clinical poultry samples from Jordan to detect eleven H9N2 low pathogenic avian influenza viruses (LPAIV). All of the viruses tested belonged to Middle East A genetic group of G1 lineage.

View Article and Find Full Text PDF

Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious.

View Article and Find Full Text PDF

Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart.

View Article and Find Full Text PDF

African swine fever virus (ASFV) produces a fatal acute hemorrhagic fever in domesticated pigs that potentially is a worldwide economic threat. Using an expressed sequence tag (EST) library-based antisense method of random gene inactivation and a phenotypic screen for limitation of ASFV replication in cultured human cells, we identified six host genes whose cellular functions are required by ASFV. These included three loci, BAT3 (HLA-B-associated transcript 3), C1qTNF (C1q and tumor necrosis factor-related protein 6), and TOM40 (translocase of outer mitochondrial membrane 40), for which antisense expression from a tetracycline-regulated promoter resulted in reversible inhibition of ASFV production by >99%.

View Article and Find Full Text PDF