Although migraine is a common, paroxysmal, highly disabling disorder, the primary cause and the pathomechanism of migraine attacks are enigmatic. Experimental results suggest that activation of the trigeminovascular system is crucial in its pathogenesis. This activation leads to the release of vasoactive neuropeptides (calcitonin gene-related peptide - CGRP, and substance P - SP) and to neurogenic inflammation, and peripheral and central sensitisation are expressed.
View Article and Find Full Text PDFBackground And Objective: Clinical and experimental studies have revealed a central role of calcitonin gene-related peptide (CGRP) in primary headaches. The role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in neuronal and glial cell expression of CGRP- immunoreactivity (-ir) in rat trigeminal ganglia was studied with an organ culture method.
Experimental Procedures: Sections of adult rat trigeminal ganglia were cultured for up to 48 hours, examined with immunohistochemistry and quantitative real-time polymerase chain reaction (PCR) assay.
Primary headaches such as migraine are among the most prevalent neurological disorders, affecting up to one-fifth of the adult population. The scientific work in the last decade has unraveled much of the pathophysiological background of migraine, which is now considered to be a neurovascular disorder. It has been discovered that the trigemino-cerebrovascular system plays a key role in migraine headache pathophysiology by releasing the potent vasodilator calcitonin gene-related peptide (CGRP).
View Article and Find Full Text PDFThe sensory innervation of intracranial vessels originates in the trigeminal ganglion with calcitonin gene-related peptide (CGRP), substance P (SP) and pituitary adenylate cyclase activating peptide (PACAP) as frequent neuronal messengers. The present study was designed to study the expression of these neuropeptides (a) in primary culture of adult rat trigeminal ganglion neuronal cells and (b) in organ culture of sections of the trigeminal ganglion. In cell culture, axons grow in the peripheral direction for up to 48 h.
View Article and Find Full Text PDF