Publications by authors named "Aniket Pal"

Mechanical computing offers a new modality to formulate computational autonomy in intelligent matter or machines without any external powering or active elements. Transition (or solitary) waves, induced by nonreciprocity in mechanical metamaterials comprising a chain of bistable elements, have proven to be a key ingredient for dissipation-free transmission and computation of mechanical information. However, advanced processing of mechanical information in existing designs is hindered by its dissipation when interacting with networked logic gates.

View Article and Find Full Text PDF

Microactuators provide controllable driving forces for precise positioning, manipulation and operation at the microscale. Development of microactuators using active materials is often hampered by their fabrication complexity and limited motion at small scales. Here we report light-fuelled artificial goosebumps to actuate passive microstructures, inspired by the natural reaction of hair bristling (piloerection) on biological skin.

View Article and Find Full Text PDF

Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity.

View Article and Find Full Text PDF

Stimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles.

View Article and Find Full Text PDF

Structural colorful cholesterics show impressive susceptibility to external stimulation, leading to applications in electro/mechano-chromic devices. However, out-of-plane actuation of structural colorful actuators based on cholesterics and the integration with other stimulation remains underdeveloped. Herein, colorful actuators and motile humidity sensors are developed using humidity-responsive cholesteric liquid crystal networks (CLCNs) and magnetic composites.

View Article and Find Full Text PDF

Mechanical instabilities, especially in the form of bistable and multistable mechanisms, have recently garnered a lot of interest as a mode of improving the capabilities and increasing the functionalities of soft robots, structures, and soft mechanical systems in general. Although bistable mechanisms have shown high tunability through the variation of their material and design variables, they lack the option of modifying their attributes dynamically during operation. Here, we propose a facile approach to overcome this limitation by dispersing magnetically active microparticles throughout the structure of bistable elements and using an external magnetic field to tune their responses.

View Article and Find Full Text PDF

Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness.

View Article and Find Full Text PDF

The rapidly expanding field of soft robotics has provided multiple examples of how entirely soft machines and actuators can outperform conventional rigid robots in terms of adaptability, maneuverability, and safety. Unfortunately, the soft and flexible materials used in their construction impose intrinsic limitations on soft robots, such as low actuation speeds and low output forces. Nature offers multiple examples where highly flexible organisms exploit mechanical instabilities to store and rapidly release energy.

View Article and Find Full Text PDF
Article Synopsis
  • Wearable biosensors, specifically waterproof electronic decals (WPEDs), offer a low-cost solution to monitor pH levels in sweat and vaginal secretions, addressing challenges like fabrication cost and sensitivity to moisture.
  • WPEDs utilize a polyaniline/silver microflakes sensing layer for accurate pH measurement and include a heating layer to stimulate sweating, enhancing measurement reliability.
  • These decals are user-friendly, allergy-free, and connect wirelessly to a smartphone app, enabling real-time pH monitoring and improved at-home diagnosis of conditions like bacterial vaginosis.
View Article and Find Full Text PDF

Traditional manufacturing methods and materials used to fabricate epidermal electronics for physiological monitoring, transdermal stimulation, and therapeutics are complex and expensive, preventing their adoption as single-use medical devices. This work describes the fabrication of epidermal, paper-based electronic devices (EPEDs) for wearable and implantable applications by combining the spray-based deposition of silanizing agents, highly conductive nanoparticles, and encapsulating polymers with laser micromachining. EPEDs are inexpensive, stretchable, easy to apply, and disposable by burning.

View Article and Find Full Text PDF

The growing socio-economic burden of chronic skin wounds requires the development of new automated and non-invasive analytical systems capable of wirelessly monitoring wound status. This work describes the low-cost fabrication of single-use, omniphobic paper-based smart bandages (OPSBs) designed to monitor the status of open chronic wounds and to detect the formation of pressure ulcers. OPSBs are lightweight, flexible, breathable, easy to apply, and disposable by burning.

View Article and Find Full Text PDF

This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuogrgtg8117lnfmnn7g8710l08amjmlj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once