Publications by authors named "Anikeeva N"

Article Synopsis
  • - Many monoclonal antibody therapies for tumors work by activating natural killer (NK) cells through a receptor called CD16, enhancing the immune response against cancer cells.
  • - A specific variant of CD16 called L48-H improves NK cell effectiveness, allowing them to kill tumor cells more efficiently by increasing their binding affinity and speeding up the engagement with the cancer cells.
  • - The L48-H variant leads to better communication (or "immunological synapse") between NK cells and tumor cells, resulting in stronger signaling and faster response, making it a promising enhancement for cancer treatments.
View Article and Find Full Text PDF

Chronic HIV infection causes persistent low-grade inflammation that induces premature aging of the immune system including senescence of memory and effector CD8 T cells. To uncover the reasons of gradually diminished potency of CD8 T cells from people living with HIV, here we expose the T cells to planar lipid bilayers containing ligands for T-cell receptor and a T-cell integrins and analyze the cellular morphology, dynamics of synaptic interface formation and patterns of the cellular degranulation. We find a large fraction of phenotypically naive T cells from chronically infected people are capable to form mature synapse with focused degranulation, a signature of a differentiated T cells.

View Article and Find Full Text PDF

Although CAR-T cells are widely used to treat cancer, efficiency of CAR-T cell cytolytic responses has not been carefully examined. We engineered CAR specific for HMW-MAA (high-molecular-weight melanoma-associated antigen) and evaluated potency of CD8+ CAR-T cells to release cytolytic granules and to kill tissue-derived melanoma cells, which express different levels of HMW-MAA. CAR-T cells efficiently killed melanoma cells expressing high level of HMW-MAA, but not melanoma cells with lower levels of HMW-MAA.

View Article and Find Full Text PDF

New exogenous probes are needed for both imaging diagnostics and therapeutics. Here, we introduce a novel nanocomposite near-infrared (NIR) fluorescent imaging probe and test its potency as a photosensitizing agent for photodynamic therapy (PDT) against triple-negative breast cancer cells. The active component in the nanocomposite is a small molecule, pyropheophorbide phosphatidylethanolamine-QSY21 (Pyro-PtdEtn-QSY), which is imbedded into lipid nanoparticles for transport in the body.

View Article and Find Full Text PDF

In this study, using Jurkat cells, we show that DISC1 (disrupted in schizophrenia 1) and Girdin (girders of actin filament) are essential for typical actin accumulation at the immunological synapse. Furthermore, DISC1, Girdin and dynein are bound in a complex. Although this complex initially forms as a central patch at the synapse, it relocates to a peripheral ring corresponding to the peripheral supramolecular activation cluster (pSMAC).

View Article and Find Full Text PDF

MHC proteins that present peptide ligands for recognition by TCR form nanoscale clusters on the cell membrane of APCs. How the extent of MHC clustering controls productive TCR engagement and TCR-mediated signaling has not been systematically studied. To evaluate the role of MHC clustering, we exploited nanoscale discoidal membrane mimetics (nanolipoprotein particles) to capture and present peptide-MHC (pMHC) ligands at various densities.

View Article and Find Full Text PDF

The current understanding of the dynamics and structural features of T-cell synaptic interfaces has been largely determined through the use of glass-supported planar bilayers and in vitro-derived T-cell clones or lines. How these findings apply to the primary human T cells isolated from blood or lymphoid tissues is not known, partly due to significant difficulties in obtaining a sufficient number of cells for analysis. Here we address this through the development of a technique exploiting multichannel flow slides to build planar lipid bilayers containing activating and adhesion molecules.

View Article and Find Full Text PDF

CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication.

View Article and Find Full Text PDF

It is generally accepted that enumeration and characterization of antigen-specific T cells provide essential information about potency of the immune response. Here, we report a new technique to determine the frequency and potency of antigen-specific CD8 T cells. The assay measures changes of intracellular Ca in real time by fluorescent microscopy in individual CD8 T cells responding to cognate peptides.

View Article and Find Full Text PDF

Integrin engagement on lymphocytes initiates "outside-in" signaling that is required for cytoskeleton remodeling and the formation of the synaptic interface. However, the mechanism by which the "outside-in" signal contributes to receptor-mediated intracellular signaling that regulates the kinetics of granule delivery and efficiency of cytolytic activity is not well understood. We have found that variations in ICAM-1 expression on tumor cells influence killing kinetics of these cells by CD16.

View Article and Find Full Text PDF

Pyropheophorbide a (Pyro) is a near-infrared (NIR) fluorescent dye and photosensitizer with high quantum yield that makes the dye suitable for tumor treatment both as an imaging and therapy agent. We have designed and synthesized a series of a Pyro-based NIR probes, based on the conjugation of Pyro with lipids. The nature of our probes requires the use of a lipophilic carrier to deliver the probes to cancer cell membranes.

View Article and Find Full Text PDF

NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells.

View Article and Find Full Text PDF

Noncognate or self peptide-MHC (pMHC) ligands productively interact with T-cell receptor (TCR) and are always in a large access over the cognate pMHC on the surface of antigen presenting cells. We assembled soluble cognate and noncognate pMHC class I (pMHC-I) ligands at designated ratios on various scaffolds into oligomers that mimic pMHC clustering and examined how multivalency and density of the pMHCs in model clusters influences the binding to live CD8 T cells and the kinetics of TCR signaling. Our data demonstrate that the density of self pMHC-I proteins promotes their interaction with CD8 co-receptor, which plays a critical role in recognition of a small number of cognate pMHC-I ligands.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTL) play a critical role in immunity against viruses and cancer. The antigen receptor or T-cell receptor (TCR) on CTL determines the specificity toward target cells. The CD8 co-receptor functions in concert with the TCR to enhance TCR-mediated signaling, accounting for the remarkable sensitivity and swift signaling kinetics of the CTL response.

View Article and Find Full Text PDF

Cytolytic granules mediate killing of virus-infected cells by cytotoxic T lymphocytes. We show here that the granules can take long or short paths to the secretory domain. Both paths utilized the same intracellular molecular events, which have different spatial and temporal arrangements and are regulated by the kinetics of Ca(2+)-mediated signaling.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the affinity and off-rate of T-cell receptors (TCRs) affect the detection of pMHC on cell surfaces, using both low-affinity TCRs and high-affinity TCR-like antibodies.
  • - Findings indicate that pMHCs are detectable at higher cell surface densities when TCRs are oligomerized with specific scaffolds, despite both high-affinity and lower-affinity probes having similar detection limits due to flow cytometry's sensitivity constraints.
  • - Enhanced imaging techniques involving quantum dot-tagged TCRs show bright fluorescent signals that could improve the detection of viral peptides on infected cells.
View Article and Find Full Text PDF

Destruction of virus-infected cells by CTL is an extremely sensitive and efficient process. Our previous data suggest that LFA-1-ICAM-1 interactions in the peripheral supramolecular activation cluster (pSMAC) of the immunological synapse mediate formation of a tight adhesion junction that might contribute to the sensitivity of target cell lysis by CTL. Herein, we compared more (CD8(+)) and less (CD4(+)) effective CTL to understand the molecular events that promote efficient target cell lysis.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTL) can respond to a few viral peptide-MHC-I (pMHC-I) complexes among a myriad of virus-unrelated endogenous self pMHC-I complexes displayed on virus-infected cells. To elucidate the molecular recognition events on live CTL, we have utilized a self-assembled biosensor composed of semiconductor nanocrystals, quantum dots, carrying a controlled number of virus-derived (cognate) and other (noncognate) pMHC-I complexes and examined their recognition by antigen-specific T cell receptor (TCR) on anti-virus CD8(+) T cells. The unique architecture of nanoscale quantum dot/pMHC-I conjugates revealed that unexpectedly strong multivalent CD8-MHC-I interactions underlie the cooperative contribution of noncognate pMHC-I to the recognition of cognate pMHC-I by TCR to augment T cell responses.

View Article and Find Full Text PDF

It is well established that even small changes in amino acid side chains of antigenic peptide bound to major histocompatibility complex (MHC) protein may completely abrogate recognition of the peptide-MHC (pMHC) complex by the T cell receptor (TCR). Often, however, several nonconservative substitutions in the peptide antigen are accommodated and do not impair its recognition by TCR. For example, a preponderance of natural sequence variants of the human immunodeficiency virus p17 Gag-derived peptide SLYNTVATL (SL9) are recognized by cytotoxic T lymphocytes, which implies that interactions with SL9 variants are degenerate both with respect to the class I MHC molecule and with respect to TCR.

View Article and Find Full Text PDF

Two groups of malignancies with significantly distinct ratios of Ki-67 and CD16 expression were identified. Significant direct and inverse correlations between the markers were established (p < 0.01) whereas either group revealed two contradicting patterns of immune response.

View Article and Find Full Text PDF

Immunological investigation involving 100 estrogen-progesterone receptor negative (RE-RP-) and 71 estrogen-progesterone receptor positive (RE+RP+) breast cancer patients demonstrated that Ki-67 expression in the former group was twice (49.8%) that in the latter (25.9%).

View Article and Find Full Text PDF

Antagonism of T cell responses by variants of the cognate peptide is a potential mechanism of viral escape from immune responses and may play a role in the ability of HIV to evade immune control. We show here a rarely described mechanism of antagonism by a peptide shorter than the minimum length epitope for an HIV p24-specific CD4+ T cell clone. The shorter antagonist peptide-MHC complex bound the T cell receptor (TCR), albeit with lower affinity than the full-length agonist peptide.

View Article and Find Full Text PDF

5His-tagged human TNFalpha type I receptor (TNFR1) ligand-binding domain was produced in Drosophila cells under control of metallothionein Cu-inducible promoter and purified by Ni-NTA affinity chromatography to homogeneity. TNFR1 gene fragment was cloned by PCR from CD8+ in vitro cultured T-killer normal linage cDNA. In despite of three disulfide bonds, the recombinant protein was correctly folded which was conformed by TNFalpha ligand binding assay in ELISA variant.

View Article and Find Full Text PDF

Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecules (ICAMs) facilitates T cell antigen receptor (TCR)-mediated killing. To dissect TCR and LFA-1 contributions, we evaluated cytolytic activity and granule release by cytotoxic T lymphocytes (CTL) as well as intracellular granule redistribution and morphology of CTL stimulated with natural TCR ligand in the presence or absence of LFA-1 engagement. Although other adhesion mechanisms, e.

View Article and Find Full Text PDF

Polarization and segregation of the T-cell receptor (TCR) and integrins upon productive cytotoxic T-lymphocyte (CTL) target cell encounters are well documented. Much less is known about the redistribution of major histocompatibility complex class I (MHC-I) and intercellular adhesion molecule-1 (ICAM-1) proteins on target cells interacting with CTLs. Here we show that human leucocyte antigen-A2 (HLA-A2) MHC-I and ICAM-1 are physically associated and recovered from both the raft fraction and the fraction of soluble membranes of target cells.

View Article and Find Full Text PDF