Translation of the transcription factor bZIP11 is repressed by sucrose in a process that involves a highly conserved peptide encoded by the 5' leaders of bZIP11 and other plant basic region leucine zipper (bZip) genes. It is likely that a specific signaling pathway operating at physiological sucrose concentrations controls metabolism via a feedback mechanism. In this paper bZIP11 target processes are identified using transiently increased nuclear bZIP11 levels and genome-wide expression analysis.
View Article and Find Full Text PDFUsing a novel setup, we assessed how fast growth of Nicotiana tabacum seedlings responds to alterations in the light regime and investigated whether starch-free mutants of Arabidopsis thaliana show decreased growth potential at an early developmental stage. Leaf area and relative growth rate were measured based on pictures from a camera automatically placed above an array of 120 seedlings. Detection of total seedling leaf area was performed via global segmentation of colour images for preset thresholds of the parameters hue, saturation and value.
View Article and Find Full Text PDFSugars have been shown to regulate transcription of numerous genes in plants. Sucrose controls translation of the group S basic region leucine zipper (bZIP)-type transcription factor ATB2/AtbZIP11 (Rook et al., 1998a).
View Article and Find Full Text PDF