Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts.
View Article and Find Full Text PDFGenome-wide association studies have identified numerous loci linked with complex diseases, for which the molecular mechanisms remain largely unclear. Comprehensive molecular profiling of circulating metabolites captures highly heritable traits, which can help to uncover metabolic pathophysiology underlying established disease variants. We conduct an extended genome-wide association study of genetic influences on 123 circulating metabolic traits quantified by nuclear magnetic resonance metabolomics from up to 24,925 individuals and identify eight novel loci for amino acids, pyruvate and fatty acids.
View Article and Find Full Text PDFMetabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.
View Article and Find Full Text PDFBackground: Metabolomics, defined as the comprehensive identification and quantification of low-molecular-weight metabolites to be found in a biological sample, has been put forward as a potential tool for classifying individuals according to their risk of coronary heart disease (CHD). Here, we investigated whether a single-point blood measurement of the metabolome is associated with and predictive for the risk of CHD.
Methods And Results: We obtained proton nuclear magnetic resonance spectra in 79 cases who developed CHD during follow-up (median 8.
Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of familial resemblance for the concentrations in human serum of more than 100 metabolites, measured using a targeted metabolomics platform.
View Article and Find Full Text PDFBackground: Intakes of n-3 polyunsaturated fatty acids (PUFAs), especially EPA (C20:5n-3) and DHA (C22:6n-3), are known to prevent fatal coronary heart disease (CHD). The effects of n-6 PUFAs including arachidonic acid (C20:4n-6), however, remain unclear. δ-5 and δ-6 desaturases are rate-limiting enzymes for synthesizing long-chain n-3 and n-6 PUFAs.
View Article and Find Full Text PDFBackground: Genome-wide association studies (GWAS) have identified many single-nucleotide polymorphisms (SNPs) associated with coronary heart disease (CHD) or CHD risk factors (RF). Using a case-cohort study within the prospective Cardiovascular Registry Maastricht (CAREMA) cohort, we tested if genetic risk scores (GRS) based on GWAS-identified SNPs are associated with and predictive for future CHD.
Methods And Results: Incident cases (n=742), that is, participants who developed CHD during a median follow-up of 12.
Background: Plasma total cholesterol (TC) levels are highly genetically determined. Although ample evidence of genetic determination of separate lipoprotein cholesterol levels has been reported, using TC level directly as a phenotype in a relatively large broad-gene based association study has not been reported to date.
Methods And Results: We genotyped 361 single nucleotide polymorphisms (SNPs) across 243 genes based on pathways potentially relevant to cholesterol metabolism in 3575 subjects that were examined thrice over 11 years.
Mechanisms underlying the variation in human life expectancy are largely unknown, but lipid metabolism and especially lipoprotein size was suggested to play an important role in longevity. We have performed comprehensive lipid phenotyping in the Leiden Longevity Study (LLS). By applying multiple logistic regression analysis we tested for the first time the effects of parameters in lipid metabolism (i.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2005
Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD+, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD+ pool, and of NAD+-dependent cellular processes.
View Article and Find Full Text PDF