Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic "feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption.
View Article and Find Full Text PDFReward-predictive cues acquire motivating and reinforcing properties that contribute to the escalation and relapse of drug use in addiction. The ventral pallidum (VP) and ventral tegmental area (VTA) are two key nodes in brain reward circuitry implicated in addiction and cue-driven behavior. In the current study, we use in vivo fiber photometry and optogenetics to record from and manipulate VP→VTA in rats performing a discriminative stimulus task to determine the role these neurons play in invigoration and reinforcement by reward cues.
View Article and Find Full Text PDFReward-seeking behavior is often initiated by environmental cues that signal reward availability. This is a necessary behavioral response; however, cue reactivity and reward-seeking behavior can become maladaptive. To better understand how cue-elicited reward seeking becomes maladaptive, it is important to understand the neural circuits involved in assigning appetitive value to rewarding cues and actions.
View Article and Find Full Text PDF