Purpose: This study aimed to investigate, in the setting of neoadjuvant gastric irradiation with integrated boost, whether cone beam computed tomography (CBCT)-based adaptive radiation therapy compared with a defined-filling protocol would be beneficial in terms of feasibility and achieving daily reproducible dose volume indexes of the planning target volume (PTV) and organs at risk (OARs) and workflow.
Methods And Materials: Planning computed tomography (PCT) and 25 CBCT scans of a previously treated patient were used, and neoadjuvant therapy of gastric carcinoma was simulated offline. PTVs and OARs were defined per the TOPGEAR protocol (PTV: 45 Gy/1.
Background/purpose: In-vivo-accuracy analysis (IVA) of dose-delivery with active motion-management (gating/tracking) was performed based on registration of post-radiotherapeutic MRI-morphologic-alterations (MMA) to the corresponding dose-distributions of gantry-based/robotic SBRT-plans.
Methods: Forty targets in two patient cohorts were evaluated: (1) gantry-based SBRT (deep-inspiratory breath-hold-gating; GS) and (2) robotic SBRT (online fiducial-tracking; RS). The planning-CT was deformably registered to the first post-treatment contrast-enhanced T1-weighted MRI.
Purpose: For assessing healthy liver reactions after robotic SBRT (stereotactic body radiotherapy), we investigated early morphologic alterations on MRI (magnetic resonance imaging) with respect to patient and treatment plan parameters.
Patients And Methods: MRI data at 6-17 weeks post-treatment from 22 patients with 42 liver metastases were analyzed retrospectively. Median prescription dose was 40 Gy delivered in 3-5 fractions.
Aim: CT morphologic and histopathologic alterations have been reported after SBRT. We analyzed the correlation of MRI morphologic alterations with radiation doses to assess the potential for MRI-based dose-effect correlation in healthy liver tissue.
Patients And Methods: MRI data of 24 patients with liver metastases 7±3 weeks after image-guided SBRT in deep-inspiration breath-hold were retrospectively analyzed.
Several recent developments in linear accelerator-based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams.
View Article and Find Full Text PDFBackground: High-dose radiotherapy of lung cancer is challenging. Tumors may move by up to 2 cm in craniocaudal and anteroposterior directions as a function of breathing cycle. Tumor displacement increases with treatment time, which consequentially increases the treatment uncertainty.
View Article and Find Full Text PDFBackground And Purpose: We developed a simple and robust total body irradiation (TBI) method for standard treatment rooms that obviates the need for patient translation devices.
Methods And Materials: Two generic arcs with rectangular segments for a patient thickness of 16 and 20 cm (arc16/arc20) were generated. An analytical fit was performed to determine the weights of the arc segments depending on patient thickness and gantry angle.
Background: Intraoperative radiotherapy (IORT) using the INTRABEAM(®) system promises a flexible use regarding radiation protection compared to other approaches such as electron treatment or HDR brachytherapy with (192)Ir or (60)Co. In this study we compared dose rate measurements of breast- and Kypho-IORT with C-arm fluoroscopy which is needed to estimate radiation protection areas.
Materials And Methods: C-arm fluoroscopy, breast- and Kypho-IORTs were performed using phantoms (silicon breast or bucket of water).
Despite aggressive pre- or postoperative treatment, feline fibrosarcomas have high recurrence rates. Immunostimulatory gene therapy is a promising approach in veterinary oncology. This phase I dose-escalation study was performed to determine toxicity and feasibility of gene therapy with feline granulocyte-macrophage colony-stimulating factor (feGM-CSF) in cats with fibrosarcomas.
View Article and Find Full Text PDF