Plants exhibit opportunistic developmental patterns, alternating between growth and dormancy in response to external cues. Moreover, quiescence plays a critical role in proper plant growth and development, particularly within the root apical meristem and the shoot apical meristem. In these meristematic tissues, cells with relatively slower mitotic activity are present in the quiescent center and the central zone, respectively.
View Article and Find Full Text PDFCurr Opin Plant Biol
December 2023
Plant development is based on the balance of stem cell maintenance and differentiation in the shoot and root meristems. The necessary cell fate decisions are regulated by intricate networks of proteins and biomolecules within plant cells and require robust and dynamic compartmentalization strategies, including liquid-liquid phase separation (LLPS), which allows the formation of membrane-less compartments. This review summarizes the current knowledge about the emerging field of LLPS in plant development, with a particular focus on the shoot and root meristems.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) is an important mechanism enabling the dynamic compartmentalization of macromolecules, including complex polymers such as proteins and nucleic acids, and occurs as a function of the physicochemical environment. In the model plant, , LLPS by the protein EARLY FLOWERING3 (ELF3) occurs in a temperature-sensitive manner and controls thermoresponsive growth. ELF3 contains a largely unstructured prion-like domain (PrLD) that acts as a driver of LLPS in vivo and in vitro.
View Article and Find Full Text PDFMaintenance and homeostasis of the stem cell niche (SCN) in the Arabidopsis root is essential for growth and development of all root cell types. The SCN is organized around a quiescent center (QC) maintaining the stemness of cells in direct contact. The key transcription factors (TFs) WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and PLETHORAs (PLTs) are expressed in the SCN where they maintain the QC and regulate distal columella stem cell (CSC) fate.
View Article and Find Full Text PDF