Publications by authors named "Anik Tuladhar"

Article Synopsis
  • High mechanical loading induces temporary disruptions in cell membranes (PMD) that initiate a process called mechanotransduction, which is essential for bone adaptation.
  • The study hypothesized that disrupting a protein called β2-spectrin (Sptbn1), which supports cell structure, would increase membrane fragility, leading to altered responses in osteocytes (bone cells) under mechanical stress.
  • Results showed that disrupting Sptbn1 led to more PMD formation and slower repair rates in cells, impaired cell survival, and reduced bone thickening in response to mechanical loading, highlighting Sptbn1's crucial role in bone adaptation and cell response to stress.
View Article and Find Full Text PDF

We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCμ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested.

View Article and Find Full Text PDF

Introduction: Periodontal disease and caries are the most common causes of tooth loss worldwide. Studies have demonstrated strong association between periodontitis and adverse pregnancy outcomes. Medical doctors, who are the primary healthcare providers, seldom advise women to seek dental care during pregnancy.

View Article and Find Full Text PDF