Publications by authors named "Anie Priscilla Masilamani"

Treatment of advanced prostate cancer lacks specificity and curative intent. Therefore, the need for new targeted therapeutic approaches is high. In the present study, we generated the new targeted toxin EGF-PE24mutΔREDLK binding to the epidermal growth factor receptor (EGFR) on the surface of prostate cancer cells.

View Article and Find Full Text PDF

Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma.

View Article and Find Full Text PDF

Background/aim: Reports on over-expression of the epidermal growth factor receptor (EGFR) in bladder cancer and its function in tumorigenesis have suggested to target this antigen.

Materials And Methods: We generated the targeted toxin EGF-PE40 consisting of the human epidermal growth factor (EGF) as the binding domain and PE40, a truncated version of Pseudomonas Exotoxin A, as the toxin domain. EGF-PE40 was tested on EGFR-expressing bladder cancer cells in view of binding via flow cytometry, and cytotoxicity via WST viability assay.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains.

View Article and Find Full Text PDF

Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of beta-galactosidase and beta-glucosidase. To determine the presence of beta-galactosidase and beta-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation.

View Article and Find Full Text PDF