The growing understanding that soil bacteria play a critical role in ecosystem servicing has led to a number of large-scale biogeographical surveys of soil microbial diversity. However, most of such studies have focused on northern hemisphere regions and little is known of either the detailed structure or function of soil microbiomes of sub-Saharan African countries. In this paper, we report the use of high-throughput amplicon sequencing analyses to investigate the biogeography of soil bacteria in soils of Côte d'Ivoire.
View Article and Find Full Text PDFSubstantial areas of agricultural lands in Sub-Saharan Africa have been invaded by Chromolaena odorata (Asteraceae), but the consequences for arbuscular mycorrhiza fungi (AMF) remains poorly understood. This study explores changes in diverse AMF community attributes and soil available phosphorus following C. odorata invasion in forest and savanna fragments in Côte d'Ivoire (West Africa).
View Article and Find Full Text PDFConferences are spaces to meet and network within and across academic and technical fields, learn about new advances, and share our work. They can help define career paths and create long-lasting collaborations and opportunities. However, these opportunities are not equal for all.
View Article and Find Full Text PDFOver the past decade, many projects have been initiated worldwide to decipher the composition and function of the soil microbiome, including the African Soil Microbiome (AfSM) project that aims at providing new insights into the presence and distribution of key groups of soil bacteria from across the African continent. In this national study, carried out under the auspices of the AfSM project, we assessed the taxonomy, diversity and distribution of rhizobial genera in soils from the tropical savannah zones in Northern Côte d'Ivoire. Genomic DNA extracted from seven sampled soils was analyzed by sequencing the V4-V5 variable region of the 16S rDNA using Illumina's MiSeq platform.
View Article and Find Full Text PDFMotivation: Cone snails are among the richest sources of natural peptides with promising pharmacological and therapeutic applications. With the reduced costs of RNAseq, scientists now heavily rely on venom gland transcriptomes for the mining of novel bioactive conopeptides, but the bioinformatic analyses often hamper the discovery process.
Results: Here, we present ConoDictor 2.
Despite their impressive diversity and already broad therapeutic applications, cone snail venoms have received less attention as a natural source in the investigation of antimicrobial peptides than other venomous animals such as scorpions, spiders, or snakes. Cone snails are among the largest genera () of marine invertebrates, with more than seven hundred species described to date. These predatory mollusks use their sophisticated venom apparatus to capture prey or defend themselves.
View Article and Find Full Text PDFSpider venoms represent an original source of novel compounds with therapeutic and agrochemical potential. Whereas most of the research efforts have focused on large mygalomorph spiders, araneomorph spiders are equally promising but require more sensitive and sophisticated approaches given their limited size and reduced venom yield. Belonging to the latter group, the genus ("wolf spiders") contains many species widely distributed throughout the world.
View Article and Find Full Text PDFBackground: Computational biology requires the reading and comprehension of biological data files. Plain-text formats such as SAM, VCF, GTF, PDB and FASTA, often contain critical information which is obfuscated by the data structure complexity.
Results: bioSyntax ( https://biosyntax.