Publications by authors named "Anibal Pauchard"

Islands have unique vulnerabilities to biodiversity loss and climate change. Current Nationally Determined Contributions under the Paris Agreement are insufficient to avoid the irreversible loss of critical island ecosystems. Existing research, policies, and finance also do not sufficiently address small islands' social-environmental challenges.

View Article and Find Full Text PDF
Article Synopsis
  • The IPBES invasive alien species assessment is the first comprehensive global review focusing on the threats posed by invasive species to biodiversity and human wellbeing, synthesizing over 13,000 scientific and local knowledge sources.
  • It reveals significant and escalating threats from invasive alien species and outlines practical management strategies for addressing these challenges.
  • The assessment has garnered support from 143 member states, urging immediate action against biological invasions to protect ecosystems and communities worldwide.
View Article and Find Full Text PDF

Inclusivity is fundamental to progress in understanding and addressing the global phenomena of biological invasions because inclusivity fosters a breadth of perspectives, knowledge, and solutions. Here, we report on how the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment on invasive alien species (IAS) prioritized inclusivity, the benefits of this approach, and the remaining challenges.

View Article and Find Full Text PDF

High-elevation ecosystems are among the few ecosystems worldwide that are not yet heavily invaded by non-native plants. This is expected to change as species expand their range limits upwards to fill their climatic niches and respond to ongoing anthropogenic disturbances. Yet, whether and how quickly these changes are happening has only been assessed in a few isolated cases.

View Article and Find Full Text PDF

Biological invasions produce negative impacts worldwide, causing massive economic costs and ecological impacts. Knowing the relationship between invasive species abundance and the magnitude of their impacts (abundance-impact curves) is critical to designing prevention and management strategies that effectively tackle these impacts. However, different measures of abundance may produce different abundance-impact curves.

View Article and Find Full Text PDF

Aim: Climate change is expected to impact mountain biodiversity by shifting species ranges and the biomes they shape. The extent and regional variation in these impacts are still poorly understood, particularly in the highly biodiverse Andes. Regional syntheses of climate change impacts on vegetation are pivotal to identify and guide research priorities.

View Article and Find Full Text PDF

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is causing plant species in mountains worldwide to shift their elevational ranges, complicating efforts to monitor these changes due to varying sampling methods.
  • The Mountain Invasion Research Network (MIREN) developed a standardized protocol to assess native and non-native plant distributions along elevation gradients over time, using surveys conducted every five years at specific sites.
  • Initial results show unique elevational patterns for native plant richness and a global decline in non-native species, highlighting disturbed areas like road edges as hotspots for plant invasions, emphasizing the need for more global studies to guide conservation efforts.
View Article and Find Full Text PDF
Article Synopsis
  • Research discusses how current global climate models are based on air temperatures but fail to capture the soil temperatures beneath vegetation where many species thrive.
  • New global maps present soil temperature and bioclimatic variables at 1-km resolution for specific depths, revealing that mean annual soil temperatures can differ significantly from air temperatures by up to 10°C.
  • The findings indicate that relying on air temperature could misrepresent climate impacts on ecosystems, especially in colder regions, highlighting the need for more precise soil temperature data for ecological studies.
View Article and Find Full Text PDF

Formulating effective management plans for addressing the impacts of invasive non-native species (INNS) requires the definition of clear priorities and tangible targets, and the recognition of the plurality of societal values assigned to these species. These tasks require a multi-disciplinary approach and the involvement of stakeholders. Here, we describe procedures to integrate multiple sources of information to formulate management priorities, targets, and high-level actions for the management of INNS.

View Article and Find Full Text PDF

Ecology must flourish globally, especially in a period of unprecedented anthropogenic global change. However, some regions dominate the ecological literature. Multiple barriers prevent global production and exchange of ecological knowledge.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how soil origin and abiotic factors affect the growth of the invasive tree species Pinus contorta by using different types of soil from native and introduced ranges across three countries.
  • Results showed that soil conditions in the introduced ranges, like nitrogen and phosphorus levels, significantly impacted how well the plants responded to inoculated treatments.
  • The findings challenge traditional invasion hypotheses, indicating that soil biota from invasive ranges were less beneficial for growth, thus supporting the missed mutualism hypothesis instead.
View Article and Find Full Text PDF
Article Synopsis
  • The article emphasizes the urgent need to address the biodiversity crisis and its impact on ecosystems.
  • It highlights the financial costs associated with invasive species and the significant consequences they have on native wildlife.
  • The role of human actions in exacerbating these issues is critical and should be a focal point in conservation efforts.
View Article and Find Full Text PDF

Plant associated mutualists can mediate invasion success by affecting the ecological niche of nonnative plant species. Anthropogenic disturbance is also key in facilitating invasion success through changes in biotic and abiotic conditions, but the combined effect of these two factors in natural environments is understudied. To better understand this interaction, we investigated how disturbance and its interaction with mycorrhizas could impact range dynamics of nonnative plant species in the mountains of Norway.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the future impacts of biological invasions is complex due to various environmental and socio-economic factors, making expert assessments vital in the absence of quantitative models.
  • An evaluation by 36 experts suggests that alien species invasions may rise by 20%-30%, posing significant threats to biodiversity, regardless of socioecological contexts.
  • Key drivers like transport, climate change, and socio-economic shifts will heavily influence these impacts, but proactive measures could lessen the consequences and contribute to global biodiversity goals.
View Article and Find Full Text PDF
Article Synopsis
  • Biological invasions are a growing global issue driven by increased human connectivity and population, with invasive alien species spreading widely and negatively impacting ecosystems and livelihoods.
  • These invaders disrupt native species, reduce biodiversity, and alter ecosystem functions, leading to long-term ecological consequences that are often only recognized after they become established.
  • Despite successful biosecurity efforts in some countries, like Australia and New Zealand, many nations inadequately address invasions, highlighting the need for enhanced international collaboration and better implementation of management strategies to mitigate their effects.
View Article and Find Full Text PDF

Emerging infectious diseases, such as coronavirus disease 2019 (COVID-19), are driven by ecological and socioeconomic factors, and their rapid spread and devastating impacts mirror those of invasive species. Collaborations between biomedical researchers and ecologists, heretofore rare, are vital to limiting future outbreaks. Enhancing the crossdisciplinary framework offered by invasion science could achieve this goal.

View Article and Find Full Text PDF

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked.

View Article and Find Full Text PDF

Aim: Tree invasions are a threat to biodiversity conservation, and although it is hard to predict the future spread of invasive tree species, there are tools available which could allow some estimations. The magnitude of spatial spread (a proxy of invasiveness) can be predicted from species climatic requirement (climatic niche) and can be represented by species distribution models (SDMs). We aimed to assess whether conserves its niche in the new environment of south-central Chile, and also, to estimate the invasive stage of the species.

View Article and Find Full Text PDF

In recent decades large fires have affected communities throughout central and southern Chile with great social and ecological consequences. Despite this high fire activity, the controls and drivers and the spatiotemporal pattern of fires are not well understood. To identify the large-scale trends and drivers of recent fire activity across six regions in south-central Chile (~32-40° S Latitude) we evaluated MODIS satellite-derived fire detections and compared this data with Chilean Forest Service records for the period 2001-2017.

View Article and Find Full Text PDF

Tree invasions are increasing globally, causing major problems for biodiversity, ecosystem services and human well-being. In South America, conifer invasions occur across many ecosystems and while numerous studies address the ecological consequences of these invasions, little is known about social perceptions and people's attitudes toward their control. The social perceptions on the effect of invasive conifers can include recreational, cultural and conservation dimensions.

View Article and Find Full Text PDF

Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g.

View Article and Find Full Text PDF