Publications by authors named "Ani Vardanyan"

Biocatalytic degradation with the use of enzymes has gained great attention in the past few years due to its advantages of high efficiency and environmental friendliness. Novel, cost-effective, and green nanoadsorbents were produced in this study, using natural silicates as an enzyme host matrix for core-shell immobilization technique. With the natural silicate as a core and silica layer as a shell, it was possible to encapsulate two different enzymes: horseradish peroxidase (HRP) and laccase, for removal and degradation of three pharmaceuticals: diclofenac (DFC), carbamazepine (CBZ), and paracetamol (PC).

View Article and Find Full Text PDF

The synthesis of core-shell magnetic mesoporous nanoparticles (MMSNs) through a phase transfer process is usually performed at the 100-250 mg scale. At the gram scale, nanoparticles without cores or with multicore systems are observed. Iron oxide core nanoparticles (IO) were synthesized through a thermal decomposition procedure of α-FeO(OH) in oleic acid.

View Article and Find Full Text PDF

The synthesis through click chemistry of triethoxysilylated cyclen derivative-based ligands is described. Different methods were used such as the copper catalyzed Huisgen's reaction, or thiol-ene reaction for the functionalization of the cyclen scaffold with azidopropyltriethoxysilane or mercaptopropyltriethoxysilane, respectively. These ligands were then grafted on magnetic mesoporous silica nanoparticles (MMSN) for extraction and separation of Ni(ii) and Co(ii) metal ions from model solutions.

View Article and Find Full Text PDF

Novel silica-based adsorbents were synthesized by grafting the surface of SiO nanoparticles with amine and sulfur containing functional groups. Produced nanomaterials were characterized by SEM-EDS, AFM, FTIR, TGA and tested for adsorption and separation of Rare Earth Elements (REE) (Nd and Sm) and Late Transition Metals (LTM) (Ni and Co) in single and mixed solutions. The adsorption equilibrium data analyzed and fitted well to Langmuir isotherm model revealing monolayer adsorption process on homogeneously functionalized silica nanoparticles (NPs).

View Article and Find Full Text PDF

A series of hybrid adsorbents were produced by surface modification with amino polycarboxylate ligands of industrially available microparticles (MP) of Kromasil® mesoporous nanostructured silica beads, bearing grafted amino propyl ligands. Produced materials, bearing covalently bonded functions as EDTA and TTHA, original Kromasil®, bearing amino propyl ligands, and bare particles, obtained by thermal treatment of Kromasil® in air, were characterized by SEM-EDS, AFM, FTIR, TGA and gas sorption techniques. Adsorption kinetics and capacity of surface-modified particles to adsorb Rare Earth Elements (REE), crucial for extraction in recycling processes, were evaluated under dynamic conditions, revealing specificity matching the ligand nature and the size of REE cations.

View Article and Find Full Text PDF