J Pharmacol Toxicol Methods
March 2024
Background And Purpose: A recent paradigm shift in proarrhythmic risk assessment suggests that the integration of clinical, non-clinical, and computational evidence can be used to reach a comprehensive understanding of the proarrhythmic potential of drug candidates. While current computational methodologies focus on predicting the incidence of proarrhythmic events after drug administration, the objective of this study is to predict concentration-response relationships of QTc as a clinical endpoint.
Experimental Approach: Full heart computational models reproducing human cardiac populations were created to predict the concentration-response relationship of changes in the QT interval as recommended for clinical trials.
Computational methods and tools are a powerful complementary approach to experimental work for studying regulatory interactions in living cells and systems. We demonstrate the use of formal reasoning methods as applied to the Caenorhabditis elegans germ line, which is an accessible system for stem cell research. The dynamics of the underlying genetic networks and their potential regulatory interactions are key for understanding mechanisms that control cellular decision-making between stem cells and differentiation.
View Article and Find Full Text PDFMechano-electric feedback affects the electrophysiological and mechanical function of the heart and the cellular, tissue, and organ properties. To determine the main factors that contribute to this effect, this study investigated the changes in the action potential characteristics of the ventricle during contraction. A model of stretch-activated channels was incorporated into a three-dimensional multiscale model of the contracting ventricle to assess the effect of different preload lengths on the electrophysiological behavior.
View Article and Find Full Text PDFCardiovasc Eng Technol
December 2015
A biophysical detailed multiscale model of the myocardium is presented. The model was used to study the contribution of interrelated cellular mechanisms to global myocardial function. The multiscale model integrates cellular electrophysiology, excitation propagation dynamics and force development models into a geometrical fiber based model of the ventricle.
View Article and Find Full Text PDF