Publications by authors named "Anh-Tung Pham"

Background: Barley (Hordeum vulgare L.) is the fourth most important cereal crop worldwide. Barley production is compromised by many abiotic stresses including drought.

View Article and Find Full Text PDF

Frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara, may cause a significant yield loss to soybean growers in regions with a warm and humid climate. Two soybean accessions, PI 594891 and PI 594774, were identified to carry a high level of resistance similar to that conditioned by the Rcs3 gene in 'Davis'.

View Article and Find Full Text PDF

Meloidogyne incognita (Kofoid and White) Chitwood (Mi) is the most economically damaging species of the root-knot nematode to soybean and other crops in the southern USA. PI 96354 was identified to carry a high level of resistance to galling and Mi egg production. Two Quantitative Trait Locus (QTLs) were found to condition the resistance in PI 96354 including a major QTL and a minor QTL on chromosome 10 and chromosome 18, respectively.

View Article and Find Full Text PDF

High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content.

View Article and Find Full Text PDF

The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds.

View Article and Find Full Text PDF

Background: The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market.

View Article and Find Full Text PDF