Publications by authors named "Angyin Wu"

Kinetic energy harvesting has significant potential, but current methods, such as friction and deformation-based systems, require high-frequency inputs and highly durable materials. We report an electrochemical system using a two-phase immiscible liquid electrolyte and Prussian blue analogue electrodes for harvesting low-frequency kinetic energy. This system converts translational kinetic energy from the displacement of electrodes between electrolyte phases into electrical energy, achieving a peak power of 6.

View Article and Find Full Text PDF

The thermally regenerative electrochemical cycle (TREC) is a reliable and efficient approach to converting low-grade heat into electricity. A high temperature coefficient (α) is the key to maximize the energy conversion efficiency of the TREC system. In this study, we present significant improvement of α of a Prussian blue analogue (PBA)-based electrochemical cell by adding poly(4-styrenesulfonic acid) (PSS) to the electrolyte.

View Article and Find Full Text PDF

Nanoporous materials possess low thermal conductivities derived from effective phonon scatterings at grain boundaries and interfaces. Thus nanoporous thermoelectric materials have full potential to improve their thermoelectric performance. Here we report a high ZT of 1.

View Article and Find Full Text PDF