Publications by authors named "Angus R Gentle"

PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost, solution-processable solar energy harvesting device and demonstrated good air stability and potential for large-scale commercial implementation. PbS QDSCs achieved a record certified efficiency of 12% in 2018 by utilizing an n-n-p device structure. However, the p-type layer has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol (EDT) that is used to modify the quantum dot (QD) surface.

View Article and Find Full Text PDF

PbS submicron crystals were formed by thermolysis of two different lead dithiocarbamate complexes. These precursors were readily synthesized and fully characterized, and in situ synchrotron powder diffraction experiments were performed to characterize their decomposition. The structure and purity of resultant PbS was examined using scanning electron and transmission electron microscopies, powder X-ray diffraction, and infrared spectroscopy.

View Article and Find Full Text PDF

A generalized four-flux method capable of modeling and tuning the spectral reflectance of a diverse range of complex composite coatings is presented. An example application is exploring and maximizing the visible and near-infrared (IR) spectral reflectance available from the diverse structures arising from combinations of the many practical paint ingredients that are available or can be made when applied to different substrates. This requires consideration of scatterers that can differ in composition, particle size, size distribution, and fill factor, and are held in place by a variety of organic binders, which typically partially absorb in the near IR.

View Article and Find Full Text PDF

A gold nanoparticle (AuNP) ruthenium phthalocyanine (RuPc) nanocomposite has been synthesised that exhibits high thermal stability. Electrical resistance measurements revealed that the nanocomposite is stable up to ∼320 °C. Examination of the nanocomposite and the RuPc stabiliser complex using thermogravimetric analysis and differential scanning calorimetry show that the remarkable thermal stability is due to the RuPc molecules, which provide an effective barrier to sintering of the AuNPs.

View Article and Find Full Text PDF

stays below ambient temperature under maximum solar intensities of mid-summer. It is found to be 11 °C cooler than a commercial white cool roof nearby. A combination of specially chosen polymers and a silver thin film yields values near 100% for both solar reflectance, and thermal emittance at infrared wavelengths from 7.

View Article and Find Full Text PDF