Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography.
View Article and Find Full Text PDFThe article describes and discusses the evolution of strategies to characterize metabolites in support of safety studies over the last 40 years, as well as future trends. Approaches to derive qualitative and quantitative information on metabolites are described, with a particular focus on the comparison of options to quantify metabolites in the absence of authentic standards. Current strategies to assess metabolite profiles are summarized into four general approaches and compared against a number of key criteria.
View Article and Find Full Text PDFThe publication of the US FDA MIST guidance document in 2008 reignited the debate around the most appropriate strategies to underwrite metabolite safety for novel compounds. Whilst some organizations have suggested that the guidelines necessitate a paradigm shift to more thorough metabolite analysis during early development, an evaluation of historical practices shows that the principles of the guidelines have always largely underpinned metabolism studies within the pharmaceutical industry. Therefore, it is argued that existing practices, when coupled to appropriate emerging analytical tools and a case-by-case consideration of the relevance of the generated metabolism data in terms of structure, physicochemisty, abundance and activity, represent a fit-for-purpose approach to metabolite-safety assessments.
View Article and Find Full Text PDFLersivirine [UK-453,061, 5-((3,5-diethyl-1-(2-hydroxyethyl)(3,5-14C2)-1H-pyrazol-4-yl)oxy)benzene-1,3-dicarbonitrile] is a next-generation non-nucleoside reverse transcriptase inhibitor, with a unique binding interaction within the reverse transcriptase binding pocket. Lersivirine has shown antiviral activity and is well tolerated in HIV-infected and healthy subjects. This open-label, Phase I study investigated the absorption, metabolism, and excretion of a single oral 500-mg dose of [14C]lersivirine (parent drug) and characterized the plasma, fecal, and urinary radioactivity of lersivirine and its metabolites in four healthy male volunteers.
View Article and Find Full Text PDFBiopharm Drug Dispos
May 2009
The publication of the FDA MIST guidelines in 2008, together with the acknowledged importance of metabolism data for the progression of novel compounds through drug discovery and drug development, has resulted in a renewed focus on the metabolite identification strategies utilised throughout the pharmaceutical industry. With the plethora of existing and emerging technologies available to the metabolite identification scientist, it is argued that increased diligence should be applied to metabolism studies in the early stages of both drug discovery and drug development, in order to more routinely impact chemical design and to comply with the concepts of the MIST guidance without re-positioning the definitive radiolabelled studies from there typical place in late development.Furthermore, these strategic elements should be augmented by a broad and thorough understanding of the impact of the derived metabolism data, most notably considerations of absolute abundance, structure and pharmacological activity, such that they can be put into proper context as part of a holistic safety strategy.
View Article and Find Full Text PDFAims: Two studies were conducted to: (i) quantify the amount of drug-related radioactivity in blood, plasma, urine and faeces following a (14)C-labelled dose of maraviroc; and (ii) investigate the pharmacokinetics, safety and tolerability of intravenous (i.v.) maraviroc and determine the absolute bioavailability of oral maraviroc.
View Article and Find Full Text PDFUK-427,857 (4, 4-difluoro-N-[(1S)-3-[exo-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]-1-phenylpropyl]cyclohexanecarboxamide) is a novel CCR5 antagonist undergoing investigation for use in the treatment of human immunodeficiency virus (HIV) infection.
View Article and Find Full Text PDFSemi-quantitative analysis of the drug-related components in biological samples collected during definitive metabolism studies using radiolabelled drug candidates is commonly achieved by HPLC profiling, using either on-line radiochemical detection or off-line liquid scintillation counting (LSC) following collection of the HPLC eluent into vials. However, although the use of LSC with vials has high sensitivity, the approach is time-consuming, laborious and destructive, whilst on-line detection methods are inappropriate for samples with low-levels of radioactivity (commonly the case with plasma samples). The use of 96-well microtitre plates (Scintiplates) for fraction collection during HPLC profiling provides a sensitive, effective and efficient alternative method for the semi-quantitative analysis of radiolabelled components in biological samples.
View Article and Find Full Text PDF