This study explores the role of task constraints over muscle synergies expression in the context of upper limb motor impairment after stroke. We recruited nine chronic stroke survivors with upper limb impairments and fifteen healthy controls, who performed a series of tasks designed to evoke muscle synergies through various spatial explorations. These tasks included an isometric force task, a dynamic reaching task, the clinical Fugl-Meyer (FM) assessment, and a pinch task.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
February 2025
This study investigates the effect of different normalisation methods on muscle synergy extraction from EMG data collected while walking in typically developing young people. Six methods were evaluated: Raw, Within-Trial Maximum, Inter-Trial Maximum, Task-Specific Maximum, Magnitude Percentile, and Unit Variance. Eighteen healthy children aged 8-15 participated, performing walking trials while their EMG signals were recorded and processed.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) is a popular method used to investigate brain function. Stimulation over the motor cortex evokes muscle contractions known as motor evoked potentials (MEPs) and also high-frequency volleys of electrical activity measured in the cervical spinal cord. The physiological mechanisms of these experimentally derived responses remain unclear, but it is thought that the connections between circuits of excitatory and inhibitory neurons play a vital role.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Monitoring spontaneous General Movements (GM) of infants 6-20 weeks post-term age is a reliable tool to assess the quality of neurodevelopment in early infancy. Abnormal or absent GMs are reliable prognostic indicators of whether an infant is at risk of developing neurological impairments and disorders such as cerebral palsy (CP). Therapeutic interventions are most effective at improving neuromuscular outcomes if administered in early infancy.
View Article and Find Full Text PDFAbnormal patterns in infants' General Movements (GMs) are robust clinical indicators for the progression of neurodevelopmental disorders, including cerebral palsy. Availability of automated platforms for General Movements Assessments (GMA) could improve screening rate and allow identifying at-risk infants. While we have previously shown that deep-learning schemes can accurately track the longitudinal axes of infant limb movements (12 anatomical locations, 3 per limb), information about the distal limb segments' rotational movements is important for making an accurate clinical assessment, but has not previously been captured.
View Article and Find Full Text PDFTo elucidate the underlying physiological mechanisms of muscle synergies, we investigated long-range functional connectivity by cortico-muscular (CMC), intermuscular (IMC) and cortico-synergy (CSC) coherence. Fourteen healthy participants executed an isometric upper limb task in synergy-tuned directions. Cortical activity was recorded using 32-channel electroencephalography (EEG) and muscle activity using 16-channel electromyography (EMG).
View Article and Find Full Text PDFComputational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson's disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord.
View Article and Find Full Text PDFTo better understand how arm weight support (WS) can be used to alleviate upper limb impairment after stroke, we investigated the effects of WS on muscle activity, muscle synergy expression, and corticomotor excitability (CME) in 13 chronic stroke patients and 6 age-similar healthy controls. For patients, lesion location and corticospinal tract integrity were assessed using magnetic resonance imaging. Upper limb impairment was assessed using the Fugl-Meyer upper extremity assessment with patients categorised as either mild or moderate-severe.
View Article and Find Full Text PDFBackground: In rugby the tackle is a complex task requiring joint position sense (JPS). Injuries commonly occur during the tackle and these account for significant time lost from training and play. Simulated tackling tasks have previously shown a reduction in shoulder joint position sense and it is possible that this may contribute to injury.
View Article and Find Full Text PDFThe development of fatigue elicits multiple adaptations from the neuromuscular system. Muscle synergies are common patterns of neuromuscular activation that have been proposed as the building blocks of human movement. We wanted to identify possible adaptations of muscle synergies to the development of fatigue in the upper limb.
View Article and Find Full Text PDFReactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components.
View Article and Find Full Text PDFBackground: Following stroke, little is known about ground reaction forces during gait initiation.
Objective: To compare stroke patients' with healthy subjects' anterior, medial, and lateral ground reaction forces generated during gait initiation.
Methods: Patients with left paresis, right paresis, and age-similar healthy subjects were recruited.
Muscle synergies describe common patterns of co- or reciprocal activation that occur during movement. After stroke, these synergies change, often in stereotypical ways. The mechanism underlying this change reflects damage to key motor pathways as a result of the stroke lesion, and the subsequent reorganization along the neuroaxis, which may be further detrimental or restorative to motor function.
View Article and Find Full Text PDFProsthetic devices are being developed to restore movement for motor-impaired individuals. A robotic arm can be controlled based on models that relate motor-cortical ensemble activity to kinematic parameters. The models are typically built and validated on data from structured trial periods during which a subject actively performs specific movements, but real-world prosthetic devices will need to operate correctly during rest periods as well.
View Article and Find Full Text PDFOur research group recently demonstrated that a person with tetraplegia could use a brain-computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able-bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments into a clinical study. We present a roadmap that may serve as an example for other areas of clinical device research as well as an update on study results.
View Article and Find Full Text PDFObjective: Intracortical electrode arrays provide the best spatial and temporal resolution signals for brain-machine interfaces. Wireless technologies are being developed to handle this information capacity, but currently the only means to deliver neural information from the implant to a signal processing unit is by a physical connection starting at a skull-mounted connector. The failure rate of the attachment of these connectors is significant.
View Article and Find Full Text PDFBackground: Paralysis or amputation of an arm results in the loss of the ability to orient the hand and grasp, manipulate, and carry objects, functions that are essential for activities of daily living. Brain-machine interfaces could provide a solution to restoring many of these lost functions. We therefore tested whether an individual with tetraplegia could rapidly achieve neurological control of a high-performance prosthetic limb using this type of an interface.
View Article and Find Full Text PDF