Death receptor 5 (DR5) is an attractive target for cancer therapy due to its broad upregulated expression in multiple cancers and ability to directly induce apoptosis. Though anti-DR5 IgG antibodies have been evaluated in clinical trials, limited efficacy has been attributed to insufficient receptor crosslinking. IGM-8444 is an engineered, multivalent agonistic IgM antibody with 10 binding sites to DR5 that induces cancer cell apoptosis through efficient DR5 multimerization.
View Article and Find Full Text PDFNatural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro-immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain.
View Article and Find Full Text PDFAberrant activation of Wnt/β-catenin signaling occurs frequently in cancer. However, therapeutic targeting of this pathway is complicated by the role of Wnt in stem cell maintenance and tissue homeostasis. Here, we evaluated antibodies blocking 6 of the 10 human Wnt/Frizzled (FZD) receptors as potential therapeutics.
View Article and Find Full Text PDFThe CD33/CD3-bispecific T-cell engaging (BiTE) antibody construct, AMG 330, potently lyses CD33+ leukemic cells in vitro. Using specimens from 41 patients with acute myeloid leukemia (AML), we studied the factors that might contribute to clinical response or resistance. For this purpose, thawed aliquots of primary AML samples were immunophenotypically characterized and subjected to various doses of AMG 330 in the presence or absence of healthy donor T-cells.
View Article and Find Full Text PDFChemotherapy-induced thrombocytopenia can lead to chemotherapy treatment delays or dose reductions. The ability of romiplostim, a thrombopoietin (TPO) mimetic, to promote platelet recovery in a mouse model of multicycle chemotherapy/radiation therapy (CRT)-induced thrombocytopenia was examined. In humans, an inverse relationship between platelet counts and endogenous TPO (eTPO) concentration exists.
View Article and Find Full Text PDFThe Bispecific T-cell Engager (BiTE) antibody modality is a clinically validated immunotherapeutic approach for targeting tumors. Using T-cell dependent cellular cytotoxicity (TDCC) assays, we measure the percentage of specific cytotoxicity induced when a BiTE molecule engages T-cells, redirects T-cell mediated cytolysis, and ultimately kills target cells. We establish a novel luminescence-based TDCC assay quantified by measuring cell viability via constitutive expression of luciferase.
View Article and Find Full Text PDFCD33 is a valid target for acute myeloid leukemia (AML) but has proven challenging for antibody-drug conjugates. Herein, we investigated the cellular determinants for the activity of the novel CD33/CD3-directed bispecific T-cell engager antibody, AMG 330. In the presence of T cells, AMG 330 was highly active against human AML cell lines and primary AML cells in a dose- and effector to target cell ratio-dependent manner.
View Article and Find Full Text PDFRecombinant human erythropoietin (rHuEPO), such as the approved agents epoetin alfa and epoetin beta, has been used successfully for over 20 years to treat anemia in millions of patients. However, due to the relatively short half-life of the molecule (approximately 8 hours), frequent dosing may be required to achieve required hemoglobin levels. Therefore, a need was identified in some anemic patient populations for erythropoiesis stimulating agents with longer half-lives that required less frequent dosing.
View Article and Find Full Text PDFWe previously reported an increased incidence of thrombotic toxicities in Sprague-Dawley rats administered the highest dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114) for 1 month as not solely dependent on high hematocrit (HCT). Thereafter, we identified increased erythropoiesis as a prothrombotic risk factor increased in the AMG 114 high-dose group with thrombotic toxicities, compared to a low-dose group with no toxicities but similar HCT. Here, we identified pleiotropic cytokines as prothrombotic factors associated with AMG 114 dose level.
View Article and Find Full Text PDFWe recently reported results that erythropoiesis-stimulating agent (ESA)-related thrombotic toxicities in preclinical species were not solely dependent on a high hematocrit (HCT) but also associated with increased ESA dose level, dose frequency, and dosing duration. In this article, we conclude that sequelae of an increased magnitude of ESA-stimulated erythropoiesis potentially contributed to thrombosis in the highest ESA dose groups. The results were obtained from two investigative studies we conducted in Sprague-Dawley rats administered a low (no thrombotic toxicities) or high (with thrombotic toxicities) dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114), 3 times weekly for up to 9 days or for 1 month.
View Article and Find Full Text PDFErythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival.
View Article and Find Full Text PDFCertain oncology trials showed worse clinical outcomes in the erythropoiesis-stimulating agent (ESA) arm. A potential explanation was that ESA-activated erythropoietin (Epo) receptors (EpoRs) promoted tumor cell growth. Although there were supportive data from preclinical studies, those findings often used invalidated reagents and methodologies and were in conflict with other studies.
View Article and Find Full Text PDFErythropoiesis stimulating agents (ESAs) have been reported to activate erythropoietin receptors (EpoR) on cell types, including endothelial, neuronal, renal tubule, and cardiac cells. ESAs have also been reported to promote angiogenesis. However, those findings are controversial and confounded by methodologic issues.
View Article and Find Full Text PDFSafety concerns surrounding the use of recombinant human erythropoietin (Epo) to treat anemia in cancer patients were raised after 2 recent clinical studies reported a worse survival outcome in patients who received epoetin alpha or epoetin beta compared with patients who received placebo. Although those findings contrasted with previous clinical studies, which demonstrated no difference in survival for cancer patients who received erythropoiesis-stimulating agents (ESAs), some investigators have suggested a potential role for ESAs in promoting tumor growth through 1) stimulation of Epo receptors (EpoR) expressed in tumors, 2) stimulation and formation of tumor vessels, and/or 3) enhanced tumor oxygenation. The first and second hypotheses appeared to be supported by some EpoR expression and ESA in vitro studies.
View Article and Find Full Text PDFInvestigators using anti-EpoR antibodies for immunoblotting and immunostaining have reported erythropoietin receptor (EpoR) expression in nonhematopoietic tissues including human tumors. However, these antibodies detected proteins of 66 to 78 kDa, significantly larger than the predicted molecular weight of EpoR (56-57 kDa). We investigated the specificity of these antibodies and showed that they all detected non-EpoR proteins.
View Article and Find Full Text PDFTherapeutic proteins have revolutionized the treatment of many diseases but low activity or rapid clearance limits their utility. New approaches have been taken to design drugs with enhanced in vivo activity and half-life to reduce injection frequency, increase convenience, and improve patient compliance. One recently used approach is glycoengineering, changing protein-associated carbohydrate to alter pharmacokinetic properties of proteins.
View Article and Find Full Text PDFHepatocyte nuclear factor-1beta (HNF-1beta) is a Pit-1, Oct-1/2, UNC-86 (POU)/homeodomain-containing transcription factor that regulates tissue-specific gene expression in the liver, kidney, and other organs. Humans with autosomal dominant mutations of HNF-1beta develop maturity-onset diabetes of the young type 5 (MODY5) and congenital cystic abnormalities of the kidney. Autosomal recessive polycystic kidney disease (ARPKD) is an inherited cystic disorder that produces renal failure in infants and children and is caused by mutations of PKHD1.
View Article and Find Full Text PDFPolycystic kidney disease (PKD) is the most common genetic cause of renal failure in humans. Several proteins that are encoded by genes associated with PKD have recently been identified in primary cilia in renal tubular epithelia. These findings have suggested that abnormalities in cilia formation and function may play a role in the pathogenesis of PKD.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2002
Kidney-specific cadherin (Ksp-cadherin) is a tissue-specific member of the cadherin family that is expressed exclusively in the kidney and developing genitourinary tract. Recent studies have shown that the proximal 250 bp of the Ksp-cadherin gene promoter are sufficient to direct tissue-specific gene expression in vivo and in vitro. The proximal 120 bp of the promoter are evolutionarily conserved between mouse and human and contain a DNase I hypersensitive site that is kidney cell specific.
View Article and Find Full Text PDFIntestinal gene regulation involves mechanisms that direct temporal expression along the vertical and horizontal axes of the alimentary tract. Sucrase-isomaltase (SI), the product of an enterocyte-specific gene, exhibits a complex pattern of expression. Generation of transgenic mice with a mutated SI transgene showed involvement of an overlapping CDP (CCAAT displacement protein)-GATA element in colonic repression of SI throughout postnatal intestinal development.
View Article and Find Full Text PDFThe stem cell leukemia (SCL) gene encodes a basic helix-loop-helix transcription factor with a critical role in the development of both blood and endothelium. Loss-of-function studies have shown that SCL is essential for the formation of hematopoietic stem cells, for subsequent erythroid development and for yolk sac angiogenesis. SCL exhibits a highly conserved pattern of expression from mammals to teleost fish.
View Article and Find Full Text PDFThe stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hematopoiesis and vasculogenesis and a pattern of expression that is highly conserved between mammals and zebrafish. Here we report the isolation and characterization of the zebrafish SCL locus together with the identification of three neighboring genes, IER5, MAP17, and MUPP1. This region spans 68 kb and comprises the longest zebrafish genomic sequence currently available for comparison with mammalian, chicken, and pufferfish sequences.
View Article and Find Full Text PDF