Publications by authors named "Angran Tian"

Urbanization and infrastructure projects generate huge amount of construction and demolition waste (CDW), posing significant challenges for the environment and human health. In order to reduce the environment and safety risks caused by the CDW landfills, this study was amid to utilize plant roots to develop a root-CDW-soil system for strengthening the CDW and enhancing the slope stability of CDW landfills. A series of experimental analyses were conducted, focusing on shear tests of root-soil composites under various moisture conditions and root content ratios.

View Article and Find Full Text PDF

Construction and demolition waste (CDW) landfills around the city have caused serious damage to the ecological environment and menaced the public health. Restoration of closed CDW landfills is critical to compensate for the degraded ecosystem and ensure safety in further development and utilization. Vegetation restoration is an essential part of the restoration of CDW landfills, in which the use of spontaneous plants is the foundation of the nature-based strategy.

View Article and Find Full Text PDF

As a traditional method of waste treatment, municipal solid waste incineration (MSWI) has become one of the main methods of urban waste treatment. However, as a byproduct of MSWI, a large amount of MSWI bottom ash is not reused in current practice. This study innovatively posits MSWI bottom ash as an eco-friendly adsorbent rather than a pollutant, exploring its potential application as a permeable subgrade material.

View Article and Find Full Text PDF

The growth, reproduction, and metabolic activities of microorganisms can lead to blockages within porous media, a phenomenon commonly observed in landfill engineering. Termed as microbial plugging, this phenomenon is significantly influenced by the inherent permeability characteristics of the system. In this study, we propose a simulation model based on the Monod equation to elucidate the clogging process caused by microorganisms in one-dimensional pore channels.

View Article and Find Full Text PDF