Publications by authors named "Angie Snell Bennett"

Background: A functional cure for chronic HBV could be achieved by boosting HBV-specific immunity. studies show that immunotherapy could be an effective strategy. However, these studies include strategies to enrich HBV-specific CD8 T cells, which could alter the expression of the anti-PD-1/anti-PD-L1 antibody targets.

View Article and Find Full Text PDF

Background & Aims: Current therapies for chronic hepatitis B virus (HBV) infection control viral replication but do not eliminate the risk of progression to hepatocellular carcinoma. HBV-specific CD8 T cells are necessary for viral control, but they are rare and exhausted during chronic infection. Preclinical studies have shown that blockade of the PD-1:PD-L1 axis can restore HBV-specific T cell functionality.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infection of seronegative children previously immunized with formalin-inactivated (FI) RSV has been associated with serious enhanced respiratory disease (ERD). The phenomenon was reproduced in the cotton rat and the mouse, and both preclinical models have been routinely used to evaluate the safety of new RSV vaccine candidates. More recently, we demonstrated that immunizations with suboptimal doses of the RSV fusion (F) antigen, in its post- or prefusion conformation, and in the presence of a Th1-biasing adjuvant, unexpectedly led to ERD in the cotton rat model.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is recognized as an important cause of lower and upper respiratory tract infections in older adults, and a successful vaccine would substantially lower morbidity and mortality in this age group. Recently, two vaccine candidates based on soluble purified glycoprotein F (RSV F), either alone or adjuvanted with glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE), failed to reach their primary endpoints in clinical efficacy studies, despite demonstrating the desired immunogenicity profile and efficacy in young rodent models. Here, one of the RSV F vaccine candidates (post-fusion conformation, RSV post-F), and a stabilized pre-fusion form of RSV F (RSV pre-F, DS-Cav1) were evaluated in aged BALB/c mice.

View Article and Find Full Text PDF

PCPP, a well-defined polyphosphazene macromolecule, has been studied as an immunoadjuvant for a soluble form of the postfusion glycoprotein of respiratory syncytial virus (RSV sF), which is an attractive vaccine candidate for inducing RSV-specific immunity in mice and humans. We demonstrate that RSV sF-PCPP formulations induce high neutralization titers to RSV comparable to alum formulations even at a low PCPP dose and protect animals against viral challenge both in the lung and in the upper respiratory tract. PCPP formulations were also characterized by Th1-biased responses, compared to Th2-biased responses that are more typical for RSV sF alone or RSV sF-alum formulations, suggesting an inherent immunostimulating activity of the polyphosphazene adjuvant.

View Article and Find Full Text PDF

To generate potent vaccine responses, subunit protein antigens typically require coformulation with an adjuvant. Oil-in-water emulsions are among the most widely investigated adjuvants, based on their demonstrated ability to elicit robust antibody and cellular immune responses in the clinic. However, most emulsions cannot be readily frozen or lyophilized, on account of the risk of phase separation, and may have a deleterious effect on protein antigen stability when stored long term as a liquid coformulation.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infection of children previously immunized with a nonlive, formalin-inactivated (FI)-RSV vaccine has been associated with serious enhanced respiratory disease (ERD). Consequently, detailed studies of potential ERD are a critical step in the development of nonlive RSV vaccines targeting RSV-naive children and infants. The fusion glycoprotein (F) of RSV in either its postfusion (post-F) or prefusion (pre-F) conformation is a target for neutralizing antibodies and therefore an attractive antigen candidate for a pediatric RSV subunit vaccine.

View Article and Find Full Text PDF