Synthesis of olefin-styrene copolymers with defined architecture is challenging due to the limitations associated with the inherent reactivity ratios for these monomers in radical or metal-catalyzed polymerizations. Herein, we developed a straightforward approach to alternating styrene-propylene and styrene-ethylene copolymers by combining radical polymerizations and powerful post-polymerization modification reactions. We employed reversible addition-fragmentation chain transfer (RAFT) copolymerization between styrene derivatives and saccharin (meth)acrylamide to generate alternating copolymers.
View Article and Find Full Text PDFWe establish a synthetically convenient method to degrade polyacrylate homopolymers. Carboxylic acids are installed along the polymer backbone by partial hydrolysis of the ester side chains, and then, in a one-pot sequential procedure, the carboxylic acids are converted into alkenes and oxidatively cleaved. This process enables the robustness and properties of polyacrylates to be maintained during their usable lifetime.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2022
Visible light-mediated direct decarboxylation of carboxylic acids with an acridine photocatalyst is a convenient and powerful method to generate carbon-centered radicals in polymer chains. Advantageously, this process proceeds under mild conditions, without preactivation of the acid groups. We utilize decarboxylation in the presence of a hydrogen atom donor to form statistical acrylate-ethylene and acrylate-propylene copolymers, which are challenging to obtain by direct polymerization.
View Article and Find Full Text PDFPhotochemistry has revolutionized the field of polymer-biomacromolecule conjugation. Ligation reactions necessitate biologically benign conditions, and photons have a significant energy advantage over what is available thermally at ambient temperature, allowing for rapid and unique reactivity. Photochemical reactions also afford many degrees of control, specifically, spatio-temporal control, light source tunability, and increased oxygen tolerance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Nanocapsules can be designed for applications including drug delivery, catalysis, and biological imaging. The mussel-inspired material polydopamine is a promising shell layer for nanocapsules because of its free radical scavenging capacity, ability to react with a broad range of functional molecules, lack of toxicity, and biodegradability. Previous reports of polydopamine nanocapsule formation have relied on a templating approach.
View Article and Find Full Text PDF