Publications by authors named "Angharad E Fenton-May"

Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4 T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption.

View Article and Find Full Text PDF

A single HIV-1 variant establishes infection of the host after sexual contact. Identifying the phenotypic characteristics of these Transmitted Founder (T/F) viruses is important to understand the restriction mechanisms during transmission. Langerhans cells (LCs) are the mucosal dendritic cell subset that has been shown to have a protective role in HIV-1 transmission.

View Article and Find Full Text PDF

Heterosexual transmission of HIV-1 is characterized by a genetic bottleneck that selects a single viral variant, the transmitted/founder (TF), during most transmission events. To assess viral characteristics influencing HIV-1 transmission, we sequenced 167 near full-length viral genomes and generated 40 infectious molecular clones (IMC) including TF variants and multiple non-transmitted (NT) HIV-1 subtype C variants from six linked heterosexual transmission pairs near the time of transmission. Consensus-like genomes sensitive to donor antibodies were selected for during transmission in these six transmission pairs.

View Article and Find Full Text PDF

Background: Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels.

View Article and Find Full Text PDF

The human C-type lectin-like molecule CLEC5A is a critical macrophage receptor for dengue virus. The binding of dengue virus to CLEC5A triggers signaling through the associated adapter molecule DAP12, stimulating proinflammatory cytokine release. We have crystallized an informative ensemble of CLEC5A structural conformers at 1.

View Article and Find Full Text PDF

The platelet receptor CLEC-2 binds to the snake venom toxin rhodocytin and the tumor cell surface protein podoplanin. Binding of either of these ligands promotes phosphorylation of a single tyrosine residue in the YXXL motif in the intracellular domain of CLEC-2. Phosphorylation of this tyrosine initiates binding of spleen tyrosine kinase (Syk) and triggers further downstream signaling events and ultimately potent platelet activation and aggregation.

View Article and Find Full Text PDF

We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing HIV-1. This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets.

View Article and Find Full Text PDF