Publications by authors named "Angelos P Markopoulos"

Advances in material science have indeed revolutionized engineering, bringing forth a suite of new materials with remarkable properties [...

View Article and Find Full Text PDF

Electrical Discharge Machining (EDM) is a non-conventional machining technique, capable of processing any kind of conductive material. Recently, it has been successfully utilized for producing hydrophobic characteristics in inherently hydrophilic metallic materials. In this work, Wire Electrical Discharge Machining (WEDM) was utilized for producing hydrophobic characteristics on the surface of the aluminum alloy 6082, and various parameters that can affect wettability were investigated.

View Article and Find Full Text PDF

The spread of bacteria through contaminated surfaces is a major issue in healthcare, food industry, and other economic sectors. The widespread use of antibiotics is not a sustainable solution in the long term due to the development of antibiotic resistance. Therefore, surfaces with antibacterial properties have the potential to be a disruptive approach to combat microbial contamination.

View Article and Find Full Text PDF

As a non-conventional machining technology, EDM is used extensively in modern industry, particularly in machining difficult-to-cut materials. CALMAX is a chromium-molybdenum-vanadium tool steel with exceptional toughness, ductility, and wear resistance that has a wide range of applications. Despite the fact that EDM is routinely used in CALMAX machining, the related published research is brief and limited.

View Article and Find Full Text PDF

Abrasive processes are essential to the manufacturing field, due to their capability of rendering high-quality surfaces with minimum effect on workpiece integrity. As it is especially difficult to perform sufficient experimental work, numerical studies can be successfully employed to evaluate techniques for the improvement of the efficiency of nanometric abrasive processes. In the present study, for the first time, cases of nanogrinding on workpieces of three different fcc metals, namely, copper, nickel, and aluminum are investigated under different preheating temperatures, in order to determine the efficiency of the hot nano-grinding technique.

View Article and Find Full Text PDF

Electrical Discharge Machining (EDM) is a non-traditional cutting technology that is extensively utilized in contemporary industry, particularly for machining difficult-to-cut materials. EDM may be used to create complicated forms and geometries with great dimensional precision. Titanium alloys are widely used in high-end applications owing to their unique intrinsic characteristics.

View Article and Find Full Text PDF

Titanium alloys, due to their unique properties, are utilized in numerous modern high-end applications. Electrical Discharge Machining (EDM) is a non-conventional machining process, commonly used in machining of hard-to-cut materials. The current paper, presents an experimental study regarding the machining of Titanium Grade2 with EDM, coupled with the development of a simulation model.

View Article and Find Full Text PDF

Electrical Discharge Machining (EDM) consists of a non-conventional machining process, which is widely used in modern industry, and especially in machining hard-to-cut materials. By employing EDM, complex shapes and geometries can be produced, with high dimensional accuracy. Titanium alloys, due to their unique inherent properties, are extensively utilized in high end applications.

View Article and Find Full Text PDF

Grinding at the nanometric level can be efficiently employed for the creation of surfaces with ultrahigh precision by removing a few atomic layers from the substrate. However, since measurements at this level are rather difficult, numerical investigation can be conducted in order to reveal the mechanisms of material removal during nanogrinding. In the present study, a Molecular Dynamics model with multiple abrasive grains is developed in order to determine the effect of spacing between the adjacent rows of abrasive grains and the effect of the rake angle of the abrasive grains on the grinding forces and temperatures, ground surface, and chip formation and also, subsurface damage of the substrate.

View Article and Find Full Text PDF

In the current study, a new approach for surface modification and surface hardening of aluminum alloys is developed. The method is based on the logic of in-situ reinforcing FSP strategies. The novelty of the proposed process is the application of a bulk reinforcing metallic material instead of metallic powders.

View Article and Find Full Text PDF

The multi-energy vibration processing, namely the combination of different energies or forces acting on a free abrasive medium for grinding of metal parts, is becoming more used in finishing processes, in recent years. However, the complexity that is involved in the aforementioned process requires a careful look in the particularities of the process itself in general and the movement of the abrasive media, in particular. In this paper, the nature of the collective movement of abrasive granules between the independently oscillating surfaces of the reservoir and the processed parts is described.

View Article and Find Full Text PDF

In the current study, a first attempt at using aluminum flakes for the manufacture of open-cell aluminum foams with the space holder method is presented. The method involves powder mixing, compaction, leaching, and sintering processes. Saccharose particles were used as space holders, and multiple parameters were investigated to optimize the manufacturing processing route in order to produce high-quality open-cell aluminum foams with a simple, economic, and environmentally friendly method.

View Article and Find Full Text PDF