In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
March 2012
Pulmonary diseases are known to be largely inhomogeneous. To evaluate such inhomogeneities, we are testing an image-based method to measure gas flow in the lung regionally. Dynamic, spin-density-weighted hyperpolarized (3)He MR images performed during slow inhalation of this gas were analyzed to quantify regional inflation rate.
View Article and Find Full Text PDFWe have developed over the past years an experimental magnetic resonance imaging (MRI) and polarized gases compatible mechanical respirator for the study of the small experimental animal. The respirator has been successfully used for experiments both in the MRI setting for polarized (3)He, (19)F, and proton imaging as well as for functional measurements of the lungs. The new main pneumatic valve with the two integrated sensors for simultaneous lung pressure and volume measurements and the proportional valve to set the tidal volume of the respiration are described.
View Article and Find Full Text PDFBackground: Analysis of the plethora of metabolites found in the NMR spectra of biological fluids or tissues requires data complexity to be simplified. We present a graphical user interface (GUI) for NMR-based metabonomic analysis. The "Metabonomic Package" has been developed for metabonomics research as open-source software and uses the R statistical libraries.
View Article and Find Full Text PDF