Publications by authors named "Angelos K Kanellis"

Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times.

View Article and Find Full Text PDF
Article Synopsis
  • Ascorbic acid (AsA) is crucial for plants, serving as an antioxidant and regulating cellular redox balance.
  • Ascorbate oxidase (AO) was once considered a nonessential enzyme, but recent research highlights its significant role in managing AsA and oxygen levels, ultimately affecting plant stress resistance and growth.
  • AO also influences plant communication with the environment by responding to hormones, oxidative stress, and damage, making it important for development and fruit ripening.
View Article and Find Full Text PDF

Introduction: Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored.

View Article and Find Full Text PDF

The presence of anticancer clerodane diterpenoids is a chemotaxonomic marker for the traditional Chinese medicinal plant Scutellaria barbata, although the molecular mechanisms behind clerodane biosynthesis are unknown. Here, we report a high-quality assembly of the 414.98 Mb genome of S.

View Article and Find Full Text PDF

L-Ascorbic acid (AsA), a strong antioxidant, serves as an enzyme cofactor and redox status marker, modulating a plethora of biological processes. As tomato commercial varieties and hybrids possess relatively low amounts of AsA, the improvement of fruit AsA represents a strategic goal for enhanced human health. Previously, we have suggested that GDP-L-Galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP) can serve as possible targets for AsA manipulation in tomato (Solanum lycopersicon L.

View Article and Find Full Text PDF

Plants are exposed to numerous abiotic stresses. Drought is probably the most important of them and determines crop distribution around the world. Grapevine is considered to be a drought-resilient species, traditionally covering semiarid areas.

View Article and Find Full Text PDF

Ascorbic acid (AsA) is an essential multifaceted phytonutrient for both the human diet and plant growth. Optimum levels of AsA accumulation combined with balanced redox homeostasis are required for normal plant development and defense response to adverse environmental stimuli. Notwithstanding its moderate AsA levels, tomatoes constitute a good source of vitamin C in the human diet.

View Article and Find Full Text PDF

Labdane diterpenes (LDs), and especially sclareol, are important feedstocks for the pharmaceutical and cosmetic industries, and therefore several lines of research have led to their heterologous production in non-photosynthetic microbes and higher plants. The potential of microalgae as bioreactors of natural products has been established for a variety of bioactive metabolites, including terpenes. In this work, a codon optimized sequence encoding a key plant labdane-type diterpene (LD) cyclase, copal-8-ol diphosphate synthase from Cistus creticus (CcCLS), was introduced into the chloroplast genome of Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Ascorbic acid (AsA) is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport.

View Article and Find Full Text PDF

Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol.

View Article and Find Full Text PDF

Epidermal cell differentiation is a paramount and conserved process among plants. In Arabidopsis, a ternary complex formed by MYB, bHLH transcription factors and TTG1 modulates unicellular trichome morphogenesis. The formation of multicellular glandular trichomes of the xerophytic shrub Cistus creticus that accumulate labdane-type diterpenes, has attained much attention renowned for its medicinal properties.

View Article and Find Full Text PDF
Article Synopsis
  • Salvia diterpenes, like carnosic acid and tanshinones, have various health benefits such as antioxidant and anti-inflammatory effects, but their supply is inconsistent.
  • Researchers analyzed the transcriptome of S. pomifera glandular trichomes to find genes that could be utilized for the production of these beneficial compounds in synthetic microbial systems.
  • The study identified two key enzymes involved in the synthesis of miltiradiene, a precursor for carnosic acid-family metabolites, which could aid in understanding how to enhance their production.
View Article and Find Full Text PDF

Carnosic acid (CA) is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage) and Rosmarinus officinalis (Rosemary). To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes.

View Article and Find Full Text PDF

Ascorbic acid (AsA) and melatonin (Mel) are known molecules participating in stress resistance, however, their combined role in counteracting the impact of salinity in plants is still unknown. In this work the effect of exogenous application of 0.50 mΜ AsA, 1 μΜ Mel and their combination (AsA + Mel) on various stress responses in leaves and roots of Citrus aurantium L.

View Article and Find Full Text PDF
Article Synopsis
  • Terpenes are important natural compounds used in cosmetics, pharmaceuticals, and biofuels, but their industrial use is limited due to low natural availability and inefficient chemical synthesis.
  • Researchers developed a modular platform using the yeast Saccharomyces cerevisiae to create diverse terpene structures by combining specific modules and exploiting the flexibility of certain enzymes, leading to the production of various labdane-type scaffolds and hydroxylated diterpenes.
  • The study not only produced valuable terpene precursors that are hard to find in nature but also set up a framework for future exploration and engineering of terpenes, enhancing sustainable production methods.
View Article and Find Full Text PDF

Terpenes have numerous applications, ranging from pharmaceuticals to fragrances and biofuels. With increasing interest in producing terpenes sustainably and economically, there has been significant progress in recent years in developing methods for their production in microorganisms. In Saccharomyces cerevisiae, production of the 20-carbon diterpenes has so far proven to be significantly less efficient than production of their 15-carbon sesquiterpene counterparts.

View Article and Find Full Text PDF

The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum, and Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk medicine as herbal tea infusions for healing digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal, and anticancer properties.

View Article and Find Full Text PDF

Rosemary (Rosmarinus officinalis) produces the phenolic diterpenes carnosic acid and carnosol, which, in addition to their general antioxidant activities, have recently been suggested as potential ingredients for the prevention and treatment of neurodegenerative diseases. Little is known about the biosynthesis of these diterpenes. Here we show that the biosynthesis of phenolic diterpenes in rosemary predominantly takes place in the glandular trichomes of young leaves, and used this feature to identify the first committed steps.

View Article and Find Full Text PDF

Ascorbate oxidase (AO) is an apoplastic enzyme that uses oxygen to catalyse the oxidation of ascorbate (AA) to dehydroascorbate (DHA) via the unstable radical monodehydroascorbate (MDHA). Here, we report that transgenic tobacco plants (Nicotiana tabacum L. cv.

View Article and Find Full Text PDF

Background: Terpenoids and isoprenoids are an important class of natural products, which includes currently used drugs, high value bioactive and industrial compounds, and fuel candidates. Due to their industrial application, there is increasing interest in the development of S. cerevisiae strains capable of producing high levels of terpenoids.

View Article and Find Full Text PDF

Background: To gain insight into the regulation of fruit ascorbic acid (AsA) pool in tomatoes, a combination of metabolite analyses, non-labelled and radiolabelled substrate feeding experiments, enzyme activity measurements and gene expression studies were carried out in fruits of the 'low-' and 'high-AsA' tomato cultivars 'Ailsa Craig' and 'Santorini' respectively.

Results: The two cultivars exhibited different profiles of total AsA (totAsA, AsA + dehydroascorbate) and AsA accumulation during ripening, but both displayed a characteristic peak in concentrations at the breaker stage. Substrate feeding experiments demonstrated that the L-galactose pathway is the main AsA biosynthetic route in tomato fruits, but that substrates from alternative pathways can increase the AsA pool at specific developmental stages.

View Article and Find Full Text PDF

A transcriptome analysis was applied on two peach (Prunus persica L.) cultivars with different sensitivity to low temperature regimes to identify genes that might be involved in tolerance to extended low temperature storage. Peach fruit from 'Morettini No2' to 'Royal Glory', cultivars sensitive and tolerant to chilling injury (CI), respectively, were harvested at commercial maturity stage and allowed to ripen at room temperature (shelf-life, 25°C) or subjected to 4 and 6 weeks of cold storage (0°C, 95% R.

View Article and Find Full Text PDF

The resin of Cistus creticus subsp. creticus, a plant native to Crete, is rich in labdane-type diterpenes with significant antimicrobial and cytotoxic activities. The full-length cDNA of a putative diterpene synthase was isolated from a C.

View Article and Find Full Text PDF

Plants, and specially species adapted in non-friendly environments, produce secondary metabolites that help them to cope with biotic or abiotic stresses. These metabolites could be of great pharmaceutical interest because several of those show cytotoxic, antibacterial or antioxidant activities. Leaves' trichomes of Cistus creticus ssp.

View Article and Find Full Text PDF