Publications by authors named "Angelo Piga"

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition.

View Article and Find Full Text PDF

When a collection of distant observers share an entangled quantum state, the statistical correlations among their measurements may violate a many-body Bell inequality, demonstrating a nonlocal behavior. Focusing on the Ising model in a transverse field with power-law (1/r^{α}) ferromagnetic interactions, we show that a permutationally invariant Bell inequality based on two-body correlations is violated in the vicinity of the quantum-critical point. This observation, obtained via analytical spin-wave calculations and numerical density-matrix renormalization group computations, is traced back to the squeezing of collective-spin fluctuations generated by quantum-critical correlations.

View Article and Find Full Text PDF

We study entanglement entropy (EE) as a signature of quantum chaos in ergodic and nonergodic systems. In particular we look at the quantum kicked top and kicked rotor as multispin systems and investigate the single-spin EE which characterizes bipartite entanglement of this spin with the rest of the system. We study the correspondence of the Kolmogorov-Sinai entropy of the classical kicked systems with the EE of their quantum counterparts.

View Article and Find Full Text PDF